Biosorption of Cr(VI) Ions onto Walnut Flowers: Application of Isotherm Models

Document Type : Research Article


1 Unité de Développement des Equipements Solaires, UDES, Centre de Développement des Energies Renouvelables, CDER, Tipaza, ALGERIE

2 Centre de Développement des Energies Renouvelables, CDER, Bouzaréah, Algiers, ALGERIE

3 Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry (USTHB), Algiers, ALGERIE

4 Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry (USTHB), Algiers, ALGERIE


Biosorption of Cr(VI) ions onto Walnut Flowers (WF) is studied in a batch system in relation to the physical parameters. The efficiency approaches 100% with 5 g WF/L at pH~1.5  for a Cr(VI) concentration of 100 mg/L in less than 1 h. The experimental data are analyzed using two-parameter models (Langmuir, Freundlich, and Temkin), and three-parameter models (Redlich–Peterson, Sips, and Toth). In order to determine the best isotherm, two error analysis methods are used to evaluate the correlation coefficient and chi-square test. The error analysis demonstrates that the three-parameter models better describe the Cr(VI) biosorption data. The Sips equation provides the best fitting. The possible interaction between the Cr(VI) and the biosorbent surface was evaluated by FT-IR analyses. Overall, the proposed biosorbent material was successfully used for the removal of a Cr(VI) from contaminated solutions.


Main Subjects

[1] Ba S., Ennaciri K., Yaacoubi A., Alagui A., Bacaoui A., Activated Carbon from Olive Wastes as an Adsorbent for Chromium Ions Removal, Iran. J. Chem. Chem. Eng. (IJCCE), 37(6): 107-123 (2018).
[2] Esmaeili, A., Ghasemi, S., Zamani F., Investigation of Cr(VI) Adsorption by Dried Brown Algae Sargassum sp. and Its Activated Carbon. Iran. J. Chem. Chem. Eng. (IJCCE), 31(4): 11-19 (2012)
[3] Sarin V., Pant K.K., Removal of Chromium from Industrial Waste by Using Eucalyptus Bark, Bioresource Technol. (BIRTEB), 97(1): 15–20 (2006).
[4] Edebali S., Comparison of Chitosan-Based Biocomposites for Remediation of Water with Cr(VI) Ions, Iran. J. Chem. Chem. Eng., 39(4): 245-251 (2020).
[5] WHO, “Guidelines for Drinking-Water Quality”, 4th Edition, Geneva, Switzerland (2011).
[6] Mohan D., Pittman Jr C. U., Activated carbons and Low Cost Adsorbents for Remediation of Tri- and Hexavalent Chromium from Water, J. Hazard. Mater. (JHMAD), 137(2): 762–811 (2006).
[7] Kebir M., Chabani M., Nasrallah N., Bensmaili A., Trari M., Coupling Adsorption with Photocatalysis Process for the Cr(VI) Removal, Desalination. (DSLNAH), 270(1-3): 166–173 (2010).
[8] Ishaq M., Javed F., Amad I., Ullah H., Hadi F., Sultan S., Adsorption of Crystal Violet Dye from Aqueous Solutions onto Low-Cost Untreated and NaOH Treated Almond Shell, Iran. J. Chem. Chem. Eng. (IJCCE), 35(2): 97-106 (2016).
[9] Finocchio E., Lodi A., Solisio C., Converti A., Chromium (VI) Removal by Methylated Biomass of Spirulina Platensis: The Effect of Methylation Process, Chem. Eng. J. (CMEJAJ), 156(2): 264–269 (2010).
[10] Ben Nasr J., Ghorbal A., Adsorption of Indigo Carmine dye onto physicochemical-activated leaves of Agave Americana L, Iran. J. Chem. Chem. Eng. (IJCCE), 40(4): 1054-1066 (2020).
[11] Kurniawan A., Sisnandy V.O.A., Trilestari K., Sunarso J., Indraswati N., Ismadji S., Performance of Durian Shell Waste as High Capacity Biosorbent for Cr(VI) Removal from Synthetic Wastewatern, Ecol. Eng., 37(6): 940-947 (2011).
[12] Dehvari M., Ehrampoush M.H., Ghaneian M.T., Jamshidi B., Tabatabaee M., Adsorption Kinetics and Equilibrium Studies of Reactive Red 198 Dye by Cuttlefish Bone Powder, Iran. J. Chem. Chem. Eng. (IJCCE), 36(2): 143-151 (2017).
[13] Basha S., Murthy Z.V.P., Jha B., Biosorption of Hexavalent Chromium by Chemically Modified Seaweed, Cystoseira Indica, Chem. Eng. J. (CMEJAJ), 137(3): 480–488 (2008).
[14] Cruz-Lopes L.P., Macena M., Esteves B., Guiné R.P.F., Ideal pH for the Adsorption of Metal Ions Cr6+, Ni2+, Pb2+ in Aqueous Solution with Different Adsorbent Materials, Open Agric. (OAJPCA), 6: 115–123, (2021).
[15] Jahanban-Esfahlan A., Jahanban-Esfahlan R., Tabibiazar M., Roufegarinejad L., Amarowicz R. Recent Advances in the use of Walnut (Juglans Regia L.) Shell as a Valuable Plant-based Bio-Sorbent for the Removal of Hazardous Materials, RSC Adv. (RSCACL), 10: 7026 (2020).
[16] Greenberg A. E., Clescerl L. S., Eaton A. N., “Standard Methods for the Examination of Water and Wastewater”, 20th ed. American Public Health Association, New York. (1998).
[17] Ho Y.S., Chiu W.T., Wang C.C., Regression Analysis for the Sorption Isotherms of basic Dyes on Sugarcane Dust, Bioresource Technol. (BIRTEB), 96(11): 1285–1291 (2005).
[18] Rao P.S., Shashikant R., Munjunatha G.S., Kinetic studies on adsorption of chromium by coconut shell carbons from synthetic effluents, J. Environ. Sci. Health A. (JESEDU), 27(8): 2227–2241 (1992).
[19] Babić M.B., Milonjić S., Polovina M.J., Kaludierović B.V., Point of Zero Charge and Intrinsic Equilibrium Constants of Activated Carbon Cloth, Carbon. (CRBNAH), 37(3): 477–481 (1999).
[20] Jawad·A.H., Abdulhameed A.S., Wilson L.D., Hanafiah M.A.K.M., Nawawi W.I., ALOthman Z.A., Khan M.R., Fabrication of Schiff’s Base Chitosan‑Glutaraldehyde/Activated Charcoal Composite for Cationic Dye Removal: Optimization Using Response Surface Methodology, J. Polym. Environ. (JPENFW), 29: 2855–2868 (2021).
[21] Abdulhameed A.S., Hum N.N.M.F., Rangabhashiyam S., Jawad A.H., Wilson L.D., Yaseen Z.M., Al-Kahtani A.A., ALOthman Z.A. Statistical Modeling and Mechanistic Pathway for Methylene Blue Dye Removal by High Surface Area and Mesoporous Grass-based Activated Carbon using K2CO3 Activator, J. Environ. Chem. Eng. (JECEBG), 9: 105530 (2021)
[22] Shi Z., Zou P., Guo M., Yao S., Adsorption Equilibrium and Kinetics of Lead Ion onto Synthetic Ferrihydrites, Iran. J. Chem. Chem. Eng. (IJCCE), 34(3) : 25-31 (2015).
[23] Jawad A.H., Abdulhameed A.S., Hanafiah M.A.K.M., ALOthman Z.A., Khan M.R., and Surip S.N. Numerical Desirability Function for Adsorption of Methylene Blue Dye by Sulfonated Pomegranate Peel Biochar: Modeling, Kinetic, Isotherm, Thermodynamic, and Mechanism Study, Korean J. Chem. Eng. (KJCHE), 38(7): 1499-1509 (2021).
[24] Ahmadi S.H., Davar P., Manbohi A., Adsorptive Removal of Reactive Orange 122 from Aqueous Solutions by Ionic Liquid Coated Fe3O4 Magnetic Nanoparticles as an Efficient Adsorbent, Iran. J. Chem. Chem. Eng. (IJCCE), 35(1): 63-73 (2016).
[25] Madjene F., Chergui A., Trari M., Biosorption of Ni(II) by Fig Male: Optimization and Modeling Using a Full Factorial Design, Water Environ. Res. (WAERED), 88(6): 540-547 (2016)
[26] Yao Y., He B., Xu F., Chen X., Equilibrium and Kinetic Studies of Methyl Orange Adsorption on Multiwalled Carbon Nanotubes, Chem. Eng. J. (CMEJAJ), 170(1): 82–89 (2011).
[27] Matthews T., Majoni S., Nyoni B., Naidoo B., Chiririwa H., Adsorption of Lead and Copper by a Carbon Black and Sodium Bentonite Composite Material: Study on Adsorption Isotherms and Kinetics, Iran. J. Chem. Chem. Eng. (IJCCE), 38(1): 101-109 (2019).
[28] Kiran B., Kaushik A., Chromium Binding Capacity of Lyngbya Putealis Exopolysaccharides, Biochem. Eng. J. (BEJOFV), 38(1): 47–54 (2008).
[30] Witek-Krowiak A., Szafran R.G., Modelski S., Biosorption of Heavy Metals from Aqueous Solutions onto Peanut Shell as a Low-Cost Biosorbent, Desalination. (DSLNAH), 265(1-3): 126–134 (2011).
[31] Zeng L., Li X., Liu J.,  Adsorptive Removal of Phosphate from Aqueous Solution using Iron Oxide Tailings, Water Res. (WATRAG), 38(5): 1318-26 (2004).
[32] Febrianto J., Kosasih A. N., Sunarso J., Ju Y. H., Indraswati N., Ismadji S., Equilibrium and Kinetic Studies in Adsorption of Heavy Metals using Biosorbent: A Summary of Recent Studies, J. Hazard. Mater. (JHMAD), 162(2-3): 616–645 (2009).
[33] Kumar R., Bishnoi N. R., Garima, Bishnoi K., Biosorption of Chromium(VI) from Aqueous Solution and Electroplating Wastewater using Fungal Biomass, Chem. Eng. J. (CMEJAJ), 135(3): 202–208 (2008).
[34] Javaid A., Bajwa R., Shafique U., Anwar J., Removal of Heavy Metals by Adsorption on Pleurotus Ostreatus, Biomass and Bioenergy. (BMSBEO), 35(5): 1675-1682 (2011).
[35] Costa A.W.M.C., Guerhardt F., Ribeiro Júnior S.E.R., Biosorption of Cr(VI) using Coconut Fibers from Agro-Industrial Waste Magnetized using Magnetite Nanoparticles, Environ. Technol. (ENVTEV), 42(23): 3595-3606 (2021).
[36] Zhang R., Wang B., Ma H., Studies on Chromium(VI) Adsorption on Sulfonated Lignite, Desalination. (DSLNAH), 255(1): 61–66 (2010).
[37] Rahmana M. S., Islam M. R., Effects of pH on Isotherms Modeling for Cu(II) Ions Adsorption using Maple Wood Sawdust, Chem. Eng. J. (CMEJAJ), 149(1-3): 273–280 (2009).
[38] Solat S., Reza R., Soheila Y., Biosorption of Uranium(VI) from Aqueous Solution by Pretreated Aspergillus niger Using Sodium Hydroxide, Iran. J. Chem. Chem. Eng. (IJCCE), 34(1): 65-74 (2015).
[39] Baran M.F., Duz M.Z. Removal of Cadmium (II) in the Aqueous Solutions by Biosorption of Bacillus Licheniformis Isolated from Soil in the Area of Tigris River, Intern. J. Environ. Anal. Chem. (IJEAA), 101(4): 533-548 (2021).
[40] Baran M.F., Duz M.Z. Biosorption of Pb2+ from Aqueous Solutions by Bacillus Licheniformis Isolated from Tigris River with a Comparative Study, Int. J. Latest Res Eng Manag. (IJLREM), 4(5): 108-121 (2019).
[41] Baran M.F., Duz M.Z. Uzan S., Dolak İ., Celik K.S., Kilinc E., Removal of Hg(II) from Aqueous Solution by Bacillus subtilis ATCC 6051 (B1), J Bioprocess Biotech. (JBBOGP), 8: 329 (2018).