The Recovery of Microplastics from Rock Oysters Using Digestion Method

Document Type : Research Article


1 Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan Campus, Kuantan, Pahang, MALAYSIA

2 Department of Marine Science, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan Campus, Kuantan, Pahang, MALAYSIA


The widespread deposition of microplastics (<5.0 mm) in the marine environment has appeared to be pervasive across the globe. It has led to the major attention of many researchers to study this problem. Despite the amount of work conducted to understand these infamous microplastics, there is still no standard procedure for microplastics extraction from marine organism samples. This study investigated three types of digestion treatments; (1) KOH, (2) KOH/H2O2, and (3) KOH/NaClO, followed by density separation using 50% KI to extract the spiked microplastics from the rock oyster. Each treatment was tested to study the digestion effectiveness of the organic soft tissue materials while preserving the microplastic particles. Aside from recovering the spiked microplastics, other small contaminants have been detected in each treatment. All the spiked microplastics and the contaminants obtained were analyzed using a microscope and FT-IR for characterization. From this study, it was observed that each treatment resulted in high microplastics recovery. Among the three treatments, using 10% KOH alone provided the highest digestion rate, but it required more time to digest the oyster soft tissue. The contaminants detected in the oyster suggested the possibility of microplastics accumulation in non-digestion organs through adherence.


Main Subjects

[1] Shahul Hamid F., Bhatti M.S., Anuar N., Anuar N., Mohan P., Periathamby A., Worldwide Distribution and Abundance of Microplastic: How Dire Is the Situation?, Waste Manag. Res., 36(10): 873-897 (2018).
[2] Miller M.E., Kroon F.J., Motti C.A., Recovering Microplastics from Marine Samples: A Review of Current Practices, Mar. Pol. Bul., 123(1-2): 6-18 (2017).
[3] Besley A., Vijver M.G., Behrens P., Bosker T., A Standardized Method for Sampling and Extraction Methods for Quantifying Microplastics in Beach Sand, Mar. Pollut. Bull., 114(1): 77-83 (2017).
[4] Crichton E.M., Noël M., Gies E.A., Ross P.S., A Novel, Density-Independent and FT-IR-Compatible Approach for the Rapid Extraction of Microplastics from Aquatic Sediments, Anal. Meth., 9: 1419-1428 (2017).
[5] Hantoro I., Löhr A.J., Van Belleghem F.G.A.J., Widianarko B., Ragas A.M.J., Microplastics in Coastal Areas and Seafood: Implications for Food Safety, Food Add. Conta. - Part A Chem. Anal. Control. Expo. Risk Assess., 36(5): 674-711 (2019).
[6]   Cole M., Webb H., Lindeque P.K., Fileman E.S., Halsband C., Galloway T.S., Isolation of Microplastics in Biota-Rich Seawater Samples and Marine Organisms, Sci. Rep., 4(1): 1-8 (2014).
[7]   Vandermeersch G., Van Cauwenberghe L., Janssen C.R., Marques A., Granby K., Fait G., Kotterman M.J.J., Diogène J., Bekaert K., Robbens J., Devriese L., A Critical View on Microplastic Quantification in Aquatic Organisms, Envir. Res., 143: 46-55 (2015).
[8]   Karami A., Golieskardi A., Keong Choo C., Larat V., Galloway T.S., Salamatinia B., The Presence of Microplastics in Commercial Salts from Different Countries, Sci. Rep., 7(1): 1-9 (2017).
[9]   Costa M.F., Barletta M., Microplastics in Coastal and Marine Environments of the Western Tropical and Sub-Tropical Atlantic Ocean, Environ. Sci. Process. Impacts, 17(11): 1868-1879 (2015).
[10] Kolandhasamy P., Su L., Li J., Qu X., Jabeen K., Shi H., Adherence of Microplastics to Soft Tissue of Mussels: A Novel Way to Uptake Microplastics beyond Ingestion, Sci. Total Environ., 610: 635-640 (2018).
[11] Mathalon A., Hill P., Microplastic Fibers in the Intertidal Ecosystem Surrounding Halifax Harbor, Nova Scotia, Mar. Pollut. Bull., 81: 69-79 (2014).
[12] Van Cauwenberghe L., Janssen C.R., Microplastics in Bivalves Cultured for Human Consumption, Environ. Pollut., 193: 65-70 (2014).
[13] Enders K., Lenz R., Beer S., Stedmon C.A., Extraction of Microplastic from Biota: Recommended Acidic Digestion Destroys Common Plastic Polymers, ICES J. Mar. Sci., 74: 326-331 (2017).
[14] Setälä O., Fleming-Lehtinen V., Lehtiniemi M., Ingestion and Transfer of Microplastics in the Planktonic Food Web, Environ. Pollut., 185: 77-83 (2014).
[17] Markic A., Gaertner J.C., Gaertner-Mazouni N., Koelmans A.A., Plastic Ingestion by Marine Fish in the Wild, Crit. Rev. Environ. Sci. Technol., 50: 657-697 (2020).
[18] Phuong N.N., Zalouk-Vergnoux A., Kamari A., Mouneyrac C., Amiard F., Poirier L., Lagarde F., Quantification and Characterization of Microplastics in Blue Mussels (Mytilus Edulis): Protocol Setup and Preliminary Data on the Contamination of the French Atlantic Coast, Environ. Sci. Pollut. Res., 25: 6135-6144 (2018).
[19] Courtene-Jones W., Quinn B., Murphy F., Gary S.F., Narayanaswamy B.E., Optimisation of Enzymatic Digestion and Validation of Specimen Preservation Methods for the Analysis of Ingested Microplastics, Anal. Methods, 9: 1437-1445 (2017).
[20] von Friesen L.W., Granberg M.E., Hassellöv M., Gabrielsen G.W., Magnusson K., An Efficient and Gentle Enzymatic Digestion Protocol for the Extraction of Microplastics from Bivalve Tissue, Mar. Pollut. Bull., 142: 129-134 (2019).
[21] Yu Z., Peng B., Liu L.Y., Wong C.S., Zeng E.Y., Development and Validation of an Efficient Method for Processing Microplastics in Biota Samples, Environ. Toxicol. Chem., 38: 1400-1408 (2019).
[22] Wang Z., Taylor S.E., Sharma P., Flury M., Poor Extraction Efficiencies of Polystyrene Nano- and Microplastics from Biosolids and Soil, PLoS One, 13: 1-13 (2018).
[23] De Witte B., Devriese L., Bekaert K., Hoffman S., Vandermeersch G., Cooreman K., Robbens J., Quality Assessment of the Blue Mussel (Mytilus Edulis): Comparison between Commercial and Wild Types, Mar. Pollut. Bull., 85: 146-155 (2014).
[24] Collard F., Gilbert B., Eppe G., Parmentier E., Das K., Detection of Anthropogenic Particles in Fish Stomachs: An Isolation Method Adapted to Identification by Raman Spectroscopy, Arch. Environ. Contam. Toxicol., 69: 331-339 (2015).
[25] Claessens M., Van Cauwenberghe L., Vandegehuchte M.B., Janssen C.R., New Techniques for the Detection of Microplastics in Sediments and Field Collected Organisms, Mar. Pollut. Bull., 70: 227-233 (2013).
[26] Dehaut A., Cassone A.L., Frère L., Hermabessiere L., Himber C., Rinnert E., Rivière G., Lambert C., Soudant P., Huvet A., Duflos G., Paul-Pont I., Microplastics in Seafood: Benchmark Protocol for Their Extraction and Characterization, EnviMicroplastics in Seafood: Benchmark Protocol for Their Extraction and Characterizationron. Pollut., 215: 223-233 (2016).
[27] Foekema E.M., De Gruijter C., Mergia M.T., Van Franeker J.A., Murk A.J., Koelmans A.A., Plastic in North Sea Fish, Environ. Sci. Technol., 47: 8818-8824 (2013).
[29] Nuelle M.T., Dekiff J.H., Remy D., Fries E., A New Analytical Approach for Monitoring Microplastics in Marine Sediments, Environ. Pollut., 184: 161-169 (2014).
[30] Catarino A.I., Thompson R., Sanderson W., Henry T.B., Development and Optimization of a Standard Method for Extraction of Microplastics in Mussels by Enzyme Digestion of Soft Tissues, Environ. Toxicol. Chem., 36: 947-957 (2017).
[31] Dyachenko A., Mitchell J., Arsem N., Extraction and Identification of Microplastic Particles from Secondary Wastewater Treatment Plant (WWTP) Effluent, Anal. Methods, 9: 1412-1418 (2017).
[32] Murphy F., Ewins C., Carbonnier F., Quinn B., Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment, Environ. Sci. Technol., 50: 5800-5808 (2016).
[33] Karami A., Golieskardi A., Choo C.K., Romano N., Ho Y.B, Salamatinia, B., A High-Performance Protocol for Extraction of Microplastics in Fish, Sci. Total Environ., 578: 485-494 (2017).
[34] Hurley R.R., Lusher A.L., Olsen M., Nizzetto L., Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices, Environ. Sci. Technol., 52: 7409-7417 (2018).
[35] Imhof H.K., Schmid J., Niessner R., Ivleva N.P., Laforsch C., A Novel, Highly Efficient Method for the Separation and Quantification of Plastic Particles in Sediments of Aquatic Environments, Limnol. Oceanogr. Methods, 10: 524-537 (2012).
[36] Quinn B., Murphy F., Ewins C., Validation of Density Separation for the Rapid Recovery of Microplastics from Sediment, Anal. Methods, 9: 1491-1498 (2017).
[38] Xu X.Y., Lee W.T., Chan A.K.Y., Lo H.S., Shin P.K.S., Cheung S.G., Microplastic Ingestion Reduces Energy Intake in the Clam Atactodea Striata, Mar. Pollut. Bull., 124: 798-802 (2017).
[39] Browne M.A., Galloway T.S., Thompson R.C., Spatial Patterns of Plastic Debris along Estuarine Shorelines, Environ. Sci. TechnSpatial Patterns of Plastic Debris along Estuarine Shorelinesol., 44: 3404-3409 (2010).
[40] Gutow L., Eckerlebe A., Giménez L., Saborowski R., Experimental Evaluation of Seaweeds as a Vector for Microplastics into Marine Food Webs, Environ. Sci. Technol., 50: 915-923 (2016).
[41] Willis K.A., Eriksen R., Wilcox C., Hardesty B.D., Microplastic Distribution at Different Sediment Depths in an Urban Estuary, Front. Mar. Sci., 4: 1-8 (2017).