Separation of Hydrogen Sulfide from Butane Gas Mixture by Zeolite 13X

Document Type : Research Article

Authors

1 Faculty of Chemical, Petroleum and Gas Eng., Semnan University, Semnan, I.R. IRAN

2 Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Tehran I.R. IRAN

Abstract

The Zeolitic adsorbent is successfully synthesized by natural Iranian kaolin to the separation of hydrogen sulfide from a gas mixture. In this work, zeolite 13X from modified natural Iranian kaolin at 65 °C for 72 h at various concentrations of caustic soda solution was synthesized using a metakaolinization process at 900 °C for 2h. By Taguchi’s experimental design, the best duration and temperature of crystallization were 72 h and 65 °C. Prepared zeolite 13X was characterized using X-Ray Diffraction (XRD), Fourier Transforms InfraRed (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM), and N2 adsorption-desorption methods. In addition, the adsorption capacity of zeolite 13X for 310 ppm of hydrogen sulfide mixed with hydrocarbon gas-like butane was investigated using a volumetric method by two different detectors and different temperatures. After the adsorption process, the amount of H2S in output gas was about 108 ppm and this confirms approximately more than 65% adsorption at 25 bar and 298K. The results are is in good agreement with experimental results.

Keywords

Main Subjects


[1] Honarmand S., Moosavi E.S., Karimzadeh R., Synthesis of Zeolite Y from Kaolin and Its Model Fuel Desulfurization Performance: Optimized by Box- Behnken Method, Iran. J. Chem. Chem. Eng. (IJCCE), 39(1): 79-90 (2020).
[2] Garshasbi V., Ph.D. Thesis, “Investigation of‎ Adsorption and Diffusion of Sulfur By Zeolitic Nano Structure Adsorbent”, Semnan University, (2018). 
[3] Garshasbi V., Jahangiri M., Anbia M., Equilibrium CO2 Adsorption on Zeolite 13X Prepared from Natural Clays, Applied Surface Science, 393: 225–233 (2017).
[4] Garshasbi V., Jahangiri M., Anbia M., Adsorption of Carbon Dioxide and Methane on Nano-Size Sodalite Octahydrate Zeolite, Particulate Science and Technology, 36(6): 660-665 (2018).
[5] Pedram T., Eshaghi Z., Ahmadpour A., Nakhaei A., Optimization of Adsorption Parameters Using Central Composite Design for the Removal of Organosulfur in Diesel Fuel by Bentonite-Supported Nanoparticle NiO-WO3, Iran. J. Chem. Chem. Eng. (IJCCE), 41(3): 808-820 (2022).
[7] Ma Y., Yan C., Alshameri A., Qiu X., Zhao C., Ii D., Synthesis and Characterization of 13X Zeolite from Low-Grade Natural Kaolin, Advanced Powder Technology, 25: 495-500 (2014).
[8] Chen D., Hu X., Shi L., Cui Q., Wang H.Y., Yao H.Q., Synthesis and Characterization of Zeolite X From Lithium Slag, Applied Clay Science, 59: 148-151 (2012).
[9] Kazemian H., Naghdali Z., KashaniT.G., Farhadi F., Conversion of High Silicon Fly Ash to Na-P1 Zeolite: Alkaline Fusion Followed by Hydrothermal Crystallization, Advanced Powder Technology, 21: 279-284. (2010)
[10] Wajima T., Haga M., Kuzawa K., Ishimoto H., Tamada O., Ito K., Nishiyama T., Downs R.T., Pakovan J.F., Zeolite Synthesis from Paper Sludge Ash at Low Temperature (90 °C) with Addition of Diatomite, Journal of Hazardous Materials, 132: 244-252 (2006).
[11] Pornomo C.W., Salim C., Hinode H., Synthesis of Pure Na–X and Na–A Zeolite from Bagasse Fly Ash, Microporous and Mesoporous Materials, 162: 6-13 (2012).
[12] Eskandari A., Jahangiri M., Anbia M., Effect of Particle Size of NaX Zeolite on Adsorption of CO2/CH4, International Journal of Engineering, IJE TRANSACTIONS A: Basics, 29(1) :1-7 (2016).
[13] Eskandari A., Anbia M, Jahangiri M., Nejati F.M., Investigation of the Use of Various Silica Source on NaX Zeolite Properties, Journal of Chemical and Petroleum Engineering, 50(2): 1-7 (2017).
[14] Colina F.G, Liorens J., Study of the Dissolution of Dealuminated Kaolin in Synthesis, Microporous and Mesoporous Materials, 100: 302-306 (2007).
[15] Sheibani S., Zare K., Safavi S. M. M., Investigation of Oxidative Desulfurization of Light Naphtha by NiMo/𝛾-Al2O3 Catalyst, Iran. J. Chem. Chem. Eng. (IJCCE), 40(2): 417-427 (2021).
[16] Park J.E., Youn H.K., Yang S.T., Ahn,W.S., CO2 Capture and MWCNTs  Synthesis Using Mesoporous  Silica and Zeolite 13X Collectively Prepared from Bottom Ash, Catalysis Today, 190: 15-22 (2012).
[17] Yu L., Gong J., Zeng C., Zhang L., Synthesis of Monodisperse Zeolite A/Chitosan Hybrid Microspheres and Binderless Zeolite A Microsphere, Industrial & Engineering Chemistry Research, 51: 2299-2308 (2012).
[18] Dunne J.A., Rao M., Sircar S., Gorte R.J., Mayers A.L., Calorimetric Heats of Adsorption and Adsorption Isotherms O2, N2, Ar, CO2, CH4, C2H6 and SF6 on NaX,H-ZSM-5, and Na-ZSM-5 Zeolites, Langmuir, 12: 5896-5904 (1996).
[19] Harlick P.J.E., Tezel F.H., An Experimental Adsorbent Screening Study for CO2 Removal from N2, Microporous and Mesoporous Materials, 76: 71-75 (2004).
[21] Ozekmekci M., Salkic G.,Fellah, M.F., Use of Zeolites for the Removal of H2S: A Mini-Review, Fuel Processing Technology, Catalysts, 139: 49–60 (2015).
[22] Malek Alaie M., Jahangiri M., Rashidi A.M., Haghighi Asl A., Izadi N., Selective Hydrogen Sulfide (H2S) sensors Based on Molybdenum Trioxide (MoO3) Nanoparticle Decorated Reduced Graphene Oxide, Materials Science in Semiconductor Processing, 38: 93–100 (2015).
[24] Bakhtiari G., Bazmi M., Abdouss M., Royaee S.J., Adsorption and Desorption of Sulfur Compounds by Improved Nano Adsorbent: Optimization Using Response Surface Methodology, Iran. J. Chem. Chem. Eng. (IJCCE), 36(4): 69-79 (2017).
[25] Mikhail S., Zaki T., Khalil L., Desulfurization by an Economically Adsorption Technique, Applied Catalysis A: General, 227: 265-278 (2002).
[26] Marjani A., Mechanistic Modeling of Organic Compounds Separation from Water via Polymeric Membranes, Iran. J. Chem. Chem. Eng. (IJCCE), 36(6): 139-149 (2017).
[27] Karge H., Rask O.J., Hydrogen Sulfide Adsorption on Faujasite-Type Zeolites with Systematically Varied Si-Al Ratios, Journal of Colloid and Interface Science, 64: 522-532 (1978).
[28] Parsafar N., Ghafouri V., Banaei A., Electrochemical Sensing of H2S Gas in Air by Carboxylated Multi-Walled Carbon Nanotubes, Iran. J. Chem. Chem. Eng.(IJCCE), 38(6): 53-62 (2019).
[29] Ferino I., Monaci R., Rombi E., Solinas V., Burlamacchi L., Temperature programmed desorption of H2S from alkali-metal zeolites, Thermochim Acta, 99: 45-55 (1992).
[30] Omrani H., Naser I., Rafiezadeh M., Experimental and Numerical Study of CO2/CH4 Separation Using SAPO-34/PES Hollow Fiber Membrane, Iran. J. Chem. Chem. Eng. (IJCCE), 40(3): 841-852 (2021).
[31] Roy R.K., Hamada M.S., Design of Experiments Using the Taguchi Approach, Wiley, New York. (2001).
[32] Anbia M., Hoseini V., Sheykhi S., Sorption of Methane, Hydrogen and Carbon Dioxide on Metal-Organic Framework, Iron Terephthalate (MOF-235), J. Industrial and Engineering Chemistry, 18:1149-1152 (2012).
[33] Rashidi A., Nouralishahi M.A., Khodadadi A.A., Mortazavi Y., Karimi A., Kashefi K., Modification of Single Wall Carbon Nanotubes (SWNT) for Hydrogen Storage, International Journal of Hydrogen Energy, 35: 9489-9495 (2010).
[34] Wang C.Y., Tsao C.S., Yu M.S., Liao P.Y., Chung T.Y., Wu H.C., Miller M.A., Tzeng Y.R., Hydrogen Storage Measurement, Synthesis and Characterization of Metaleorganic Frameworks Via Bridged Spillover. Journal of Alloys and Compounds, 492: 88-94 (2010).
[35] Gougazeh M., Buhl J.C., Synthesis and Characterization of Zeolite A by Hydrothermal Transformation of Natural Jordanian Kaolin, Journal of the Association of Arab Universities for Basic and Applied Sciences, 15: 35-41 (2013).
[36] Anbia  M., Nejati, F.M., Jahangiri M., Eskandari A. Garshasbi V., Optimization of Synthesis Procedure for NaX Zeolite by Taguchi Experimental Design and its Application in CO2 Adsorption, Journal of Sciences, Islamic Republic of Iran, 26: 213-222 (2015)
[37] Roy R.K., A Primer on the Taguchi Method. John Wiley & Sons, Canada. (1997).
[38] Yu Q.F., Tang X.L., Yi H.H., Ning P., Yang L.P., Yang L.N., Yu L.L., Li H., Equilibrium and Heat of Adsorption of Phosphine on CaCl2–Modified Molecular Sieve, Asia-Pacific Journal of Chemical Engineering, 4: 612–617 (2009). 
[39] Ning P., Li F., Yi H., Tang X., Peng J., Li Y., He D., Deng H., Adsorption Equilibrium of Methane and Carbon Dioxide on Microwave-Activated Carbon, Separation and Purification Technology, 98: 321-326 (2012).
[40] Tomadakis M.M., Heck H.H., Jubran M.J., Al-Harthi K., Pressure Swing Adsorption Separation of H2S from CO2 with Molecular Sieves 4A, 5A and 13X, Separation Science and Technology, 46: 428–433 (2011).
[41] Yokogawa Y., Sakanishi M., Morikawa N., Nakaruma A., Kishida I., Varma H.K., VSC Adsorptive Properties in Ion Exchanged Zeolite Materials in Gaseous and Aqueous Medium, Procedia Engineering, 36: 168–172 (2012).
[42]  Lee S.K., Jang Y.N., Bae I.K., Chae S.C., Ryu K.W., Kim J.K., Adsorption of Toxic Gases Iron-Incorporated Na-A Zeolites Synthesized from Melting Slag, Materials Transactions, 50:2476–2483 (2009).
[43] Ali V.K., Suhas I., Mohan D., Equilibrium Uptake and Sorption Dynamics For The Removal of a Basic Dye (Basic Red) Using Low-Cost Adsorbents. Journal of Colloid and Interface Science, 265: 257–264 (2003).
[45] Tan I.A.W., Ahmad A.L., Hameed B.H., Adsorption of Basic Dye on High-Surface-Area Activated Carbon Prepared from Coconut Husk: Equilibrium, Kinetic and Thermodynamic Studies, Journal of Hazardous Materials, 154: 337–346 (2008).
[46] Monier M., Abdel-Latif D.A., Preparation of Cross-Linked Magnetic Chitosan-Phenylthiourea Resin for Adsorption of Hg(II), Cd(II) and Zn(II) Ions from Aqueous Solutions, Journal of Hazardous Materials, 209–210: 240–249 (2012).
[47] Zou W, Han R., Chen Z., Jinghua Z., Shi J., Kinetic Study Of Adsorption of Cu(II) and Pb(II) from Aqueous Solutions Using Manganese Oxide Coated Zeolite in Batch Mode, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 279: 238–246 (2006).
[48] Adnadjevic B., Vukicevic J., Rojka Z.F., Markovc V., The Influence of NaX Zeolite Particle Size on Crystallinity Measured by the XRD Method, Zeolites, 10: 699-702 (1990).