Synthesis and Application of Polyacrylamide/Cellulose Gel/Fuller’s Earth Composite for Removal of Methylene Blue from Water

Document Type : Research Article


1 Department of Chemistry and Environmental science, M.M.M. University of Technology, Gorakhpur - 273010 (U.P.), INDIA

2 Department of Chemical Engineering, M.M.M. University of Technology, Gorakhpur - 273010 (U.P.), INDIA

3 Department of Physics, B.B.A. University, Lucknow - 226025 (U.P.), INDIA


In this study, eco-friendly composite material polyacrylamide/cellulose hydrogel reinforced with fuller’s earth (PAAm/CG/FE), has been synthesized and used for the effective adsorption of the Methylene Blue (MB) dye. The synthesis of PAA/CG/FE composite followed the free radical polymerization method. Chemical compositions and morphology of the synthesized composite have been characterized by Fourier Transform InfraRed (FT-IR) Spectroscopy and Scanning Electron Microscope (SEM). Thermal stability has been determined by TGA analysis. Batch adsorption experiments have been carried out by varying different parameters viz. contact time, pH of the solution, and temperature in order to determine the maximum dye adsorption capacity of the composite. Introducing cellulose and fuller earth into the polyacrylamide eventually enhanced the structural stability, thermal stability, and MB adsorption capacity. Based on the experimental data, adsorption kinetics has been found to be well correlated with the pseudo-second-order kinetic model. It has been found that the equilibrium adsorption isotherm data perfectly followed the Langmuir isotherm model and maximum adsorption capacities were found to be 48.30 and 56.17 mg/g for PAAm and PAAm/CG/FE composite, respectively. Furthermore, the prepared composite exhibits good reusability, and it is economic, eco-friendly, and nontoxic material.


Main Subjects

[1] Jayaswal K., Sahu V., Gurjar B.R., “Water Pollution, Human Health and Remediation. in Water Remediation, Springer, Singapore, 11-27 (2018).
[2] Patwardhan A. D., “Industrial Wastewater Treatment”, PHI Learning Pvt. Ltd., New Delhi (2017).
[3] Mittal J., Permissible Synthetic Food Dyes in India, Resonance – J. Sci. Edu. (JSE), 25 567 – 577(2020).
[4] Yagub M.T., Sen T.K., Afroze S., Ang H.M., Dye and its Removal from Aqueous Solution by Adsorption: A Review, Adv. Colloid Interface Sci. (ACIS), 209: 172-184 (2014).
[5] Tan I.A.W., Ahmad A.L., Hameed B.H., Adsorption of Basic Dye on High-Surface Area Activated Carbon Prepared from Coconut Husk: Equilibrium, Kinetic and Thermodynamic Studies, J. Hazard. Mater. (JHM), 154: 337–346 (2008).
[6] Rafatullah M., Sulaiman O., Hashim R., Ahmad A., Adsorption of Methylene Blue on Low-Cost Adsorbents: A Review, J. Hazard. Mater. (JHM), 177(1-3): 70-80 (2010).
[7] Azimi A., Azari A., Rezakazemi M., Ansarpour M., Removal of Heavy Metals from Industrial Wastewaters: A Review, Chem. Bio. Eng. Reviews (CBER), 4(1): 37-59 (2017).
[9] Marahel F., Mombeni Goodajdar B., Niknam L., Faridnia M., Pournamdari E., Mohammad Doost S., Ultrasonic Assisted Adsorption of Methylene Blue Dye and Neural Network Model For Adsorption of Methylene Blue Dye by Synthesised Mn-Doped Pbs Nanoparticles, Int. J. Environ. Anal. Chem. (IJEAC), 1-22 (2021).
[12] Bulut Y., Karaer H., Adsorption of Methylene Blue from Aqueous Solution by Crosslinked Chitosan/Bentonite Composite, J. Dispers. Sci. Technol. (JDST), 36(1): 61-67 (2015).
[13] Singh N.B., Nagpal G., Agrawal S., Water Purification by Using Adsorbents: A Review, Environ. Technol. Innov. (ETI), 11:187-240 (2018).
[14] Gupta V.K., Agarwal S., Ahmad R., Mirza A., Mittal, J., Sequestration of Toxic Congo Red Dye from Aqueous Solution Using Ecofriendly Guar Gum/Activated Carbon Nanocomposite, Int. J. Biol. Macromol. (IJBM), 158:1310-1318 (2020).
[15] Kumar V., Saharan P., Sharma A.K., Umar A., Kaushal I., Mittal A., Al-Hadeethi Y., Rashad B., Silver Doped Manganese Oxide-Carbon Nanotube Nanocomposite for Enhanced Dye-Sequestration: Isotherm Studies and RSM Modelling Approach, Ceram. Int. (CI), 46(8):10309-10319 (2020).
[16] Van Tran V., Park D., Lee Y.C., Hydrogel Applications for Adsorption of Contaminants in Water and Wastewater Treatment, Environ. Sci. Pollut. Res. (ESPR), 25(25): 24569-24599 (2018).
[17] Liu B. Wang D. Yu G. Meng X., Adsorption of Heavy Metal Ions, Dyes and Proteins by Chitosan Composites and Derivatives—A Review, J. Ocean Univ.China (JOUC), 12(3): 500-508 (2013).
[18] Kausar A., Iqbal M., Javed A., Aftab K., Bhatti H.N., Nouren S., Dyes Adsorption Using Clay and Modified Clay: A Review, J. Mol. Liq. (JML), 256: 395-407 (2018).
[20] Anastopoulos I., Pashalidis I., Orfanos A.G., Manariotis I.D., Tatarchuk T., Sellaoui L., Bonilla-Petriciolet A., Mittal A., Núñez-Delgado, A., Removal of Caffeine, Nicotine and Amoxicillin From (Waste) Waters by Various Adsorbents. A Review,
J. Environ. Manage. (JEM), 261: 10236 (2020)
[21] Kiani A., Haratipour P., Ahmadi M., Zare-Dorabei R., Mahmoodi A., Efficient Removal of Some Anionic Dyes from Aqueous Solution Using A Polymer-Coated Magnetic Nano-Adsorbent, J. Water Supply Res. T. (JWSRT), 66(4): 239-248 (2017).
[22] Joseph L., Jun B.M., Jang M., Park C.M., Muñoz-Senmache J.C., Hernández-Maldonado A.J., Heyden A., Yu M., Yoon Y., Removal of Contaminants of Emerging Concern by Metal-Organic Framework Nanoadsorbents: A Review, Chem. Eng. J. (CEJ), 369: 928-946 (2019).
[23] Arora C., Soni S., Sahu S., Mittal J., Kumar P., Bajpai P.K., Iron Based Metal Organic Framework for Efficient Removal of Methylene Blue Dye from Industrial Waste, J. Mol. Liq. (JML), 284:343-352 (2019).
[24] Soni S., Bajpai P.K., Mittal J., Arora C., Utilisation of Cobalt Doped Iron Based MOF for Enhanced Removal and Recovery of Methylene Blue Dye from Waste Water, J. Mol. Liq. (JML), 314:113642 (2020).
[25] Bagotia N., Sharma A.K., Kumar S., A Review on Modified Sugarcane Bagasse Biosorbent for Removal of Dyes, Chemosphere (C), 129309 (2020).
[26] Mittal A., Mittal J., Hen Feather: A Remarkable Adsorbent for Dye Removal, “Green Chemistry for Dyes Removal from Wastewater”, Scrivener Publishing (Wiley), 409 (2015).
[27] Guiza S., Bagane M., Al-Soudani A. H., Amore H. B., Adsorption of Basic Dyes onto Natural Clay, Adsorp. Sci. Technol. (AST), 22(3): 245-255 (2004).
[28] Anastopoulos I., Mittal A., Usman M., Mittal J., Yu G., Núñez-Delgado A., Kornaros M., A Review on Halloysite-Based Adsorbents To Remove Pollutants in Water and Wastewater, J. Mol. Liq. (JML), 269:855-868 (2018).
[29] Adeyemo A.A., Adeoye I.O., Bello O.S., Adsorption of Dyes Using Different Types of Clay: A Review, Appl. Water Sci. (AWS), 7(2):543-568 (2017).
[30] Jameel M., Khan S.A., Afzal A., Adsorption Studies of Fullers Earth Nanocomposites for the Removal of Copper and Reactive Yellow 18, Dig. J. Nanomater. Bios. (DJNB), 16(1): 261-270 (2021).
[31] Jamshaid A., Hamid A., Muhammad N., Naseer A., Ghauri M., Iqbal J., Rafiq S., Shah N.S., Cellulose‐Based Materials for the Removal of Heavy Metals from Wastewater–An Overview, Chem. Bio. Eng. Reviews (CBER), 4(4):240-256 (2017).
[32] Liu R., Ma W., Jia C.Y., Wang L., Li H.Y., Effect of pH on Biosorption of Boron onto Cotton Cellulose, Desalination (D), 207(1-3): 257-267 (2007).
 [33] Wanassi B., Hariz I.B., Ghimbeu C.M., Vaulot C., Jeguirim, M., Green Carbon Composite-Derived Polymer Resin and Waste Cotton Fibers for the Removal of Alizarin Red S Dye, Energies (E), 10(9):1321 (2017).
[34] Jabli M., Baouab M.H.V., Roudesli M.S., Bartegi, A., Adsorption of Acid Dyes from Aqueous Solution on a Chitosan-Cotton Composite Material Prepared by a New Pad-Dry Process, J. Eng. Fibers. Fabr. (JEFF), 6(3):155892501100600301 (2011).
[35] Niu Y., Hu W., Guo M., Wang Y., Jia J., Hu Z., Preparation of Cotton-Based Fibrous Adsorbents for the Removal of Heavy Metal Ions, Carbohydr. Polym. (CP), 225:115218 (2019).
[37] Peng B., Yao Z., Wang X., Crombeen M., Sweeney D.G., Tam K.C., Cellulose-Based Materials in Wastewater Treatment Of Petroleum Industry, Green Energy Environ. (GEE), 5(1): 37-49 (2020).
[38] Ren H., Gao Z., Wu D., Jiang J., Sun Y., Luo, C., Efficient Pb (II) Removal Using Sodium Alginate–Carboxymethyl Cellulose Gel Beads: Preparation, Characterization, and Adsorption Mechanism, Carbohydr. Polym. (CP), 137: 402-409 (2016).
[39] Wertz J.L., Mercier J.P., Bedue O., Cellulose Science and Technology, EPFL press. (2019).
[40] Tangri A., Polyacrylamide Based Hydrogels: Synthesis, Characterization and Applications, Int. J. Pharm. Chem. Biol. Sci. (IJPCBS), 4(4) (2014).
[41] Shalla A. H., Yaseen Z., Bhat M. A., Rangreez T. A., Maswal M., Recent Review for Removal of Metal Ions by Hydrogels, Sep. Sci. Technol. (SST), 54(1): 89-100 (2019).
[42] Abu-Danso E., Srivastava V., Sillanpaa M., Bhatnagar A., Pretreatment Assisted Synthesis and Characterization of Cellulose Nanocrystals and Cellulose Nanofibers from Absorbent Cotton, Int. J. Biol. Macromol. (IJBM), 102: 248–257 (2017).
[43] Avşar A., Gokbulut Y., Ay B., Serin S., A Novel Catalyst System for the Synthesis of N, N′-Methylenebisacrylamide from acrylamide, Des. Monomers Polym. (DMP), 20(1): 434-440 (2017).
[44] Jang S.H., Jeong Y.G., Min B.G., Lyoo W.S., Lee S.C., Preparation and Lead Ion Removal Property of Hydroxyapatite/Polyacrylamide Composite Hydrogels, J. Hazard. Mater. (JHM), 159(2-3): 294-299 (2008).
[45] Zhao G., Zhang H., Fan Q., Ren X., Li J., Chen Y., Wang X., Sorption of Copper (II) Onto Super-Adsorbent of Bentonite–Polyacrylamide Composites, J. Hazard. Mater. (JHM), 173(1-3):661-668 (2010)
[46] Srivastava A., Singh M., Karsauliya K., Mondal D.P., Khare P., Singh S., Singh S.P., Effective Elimination Of Endocrine Disrupting Bisphenol A and S From Drinking Water Using Phenolic Resin-Based Activated Carbon Fiber: Adsorption, Thermodynamic and Kinetic Studies, Environ. Nanotechnol., Monit. Manag. (ENMM), 14:100316 (2020).
[47] Ji L., Chen W., Zheng S., Xu Z., Zhu D., Adsorption of Sulfonamide Antibiotics to Multiwalled Carbon Nanotubes, Langmuir (L), 25(19): 11608-11613 (2009).
[48] Dos Santos A., Viante M.F., Pochapski D.J., Downs A.J., Almeida C.A.P., Enhanced Removal of P-Nitrophenol from Aqueous Media by Montmorillonite Clay Modified with a Cationic Surfactant, J. Hazard. Mater. (JHM), 355: 136-144 (2018).
[50] Jayaramudu T., Ko H.U., Kim H.C., Kim J.W., Kim J., Swelling Behavior Of Polyacrylamide–Cellulose Nanocrystal Hydrogels: Swelling Kinetics, Temperature, and pH Effects, Materials (M), 12(13): 2080 (2019).
[51] Nayak P.S., Singh B.K., Instrumental Characterization of clay by XRF, XRD and FTIR, Bull. Mater. Sci. (BMS), 30(3): 235-238 (2007).
[52] Chen Y., Zhao Y., Zhou S., Chu X., Yang L., Xing W., Preparation and Characterization of Polyacrylamide/ Palygorskite, Appl. Clay Sci. (ACS), 46(2): 148-152 (2009).
[53] Ibrahim A.G., Sayed A.Z., El-Wahab H.A., Sayah M.M., Synthesis of Poly (acrylamide-graft-chitosan) Hydrogel: Optimization of the Grafting Parameters and Swelling Studies, Am. J. Polym. Sci. Technol. (AJPST), 5: 55-62 (2019).
[54] Abu-Danso E., Peraniemi S., Leiviska T., Kim T., Tripathi K.M., Bhatnagar A., Synthesis of Clay-Cellulose Biocomposite for the Removal of Toxic Metal Ions from Aqueous Medium, J. Hazard. Mater. (JHM), 381: 120871 (2020).
[55] Teli M.D., Kale R.D., Bhatt L., Effect of Nano Clay Loading on Zeta Potential of Polyester Nanocomposite Fibre, Indian J. Fibre Text. (IJFTR), 42(2): 125-131 (2017).
[56] Tang Y., Ma D., Zhu L., Sorption Behavior of Methyl Violet onto Poly (acrylic acid-co-acrylamide)/Kaolin Hydrogel Composite, Polym. Plast. Technol. Eng. (PPTE), 53(8):851-857 (2014).
[58] Zou X., Zhang H., Chen T., Li H., Meng C., Xia Y., Guo J., Preparation and Characterization of Polyacrylamide/Sodium Alginate Microspheres and its Adsorption of MB Dye, Colloids Surf., A Physicochem. Eng. Asp. (CSPEA), 567: 184-192 (2019).
[59] Vaz M.G., Pereira A.G., Fajardo A.R., Azevedo A.C., Rodrigues F.H., Methylene Blue Adsorption on Chitosan-G-Poly (Acrylic Acid)/Rice Husk Ash Superabsorbent Composite: Kinetics, Equilibrium, and Thermodynamics, Water Air Soil Pollut. (WASP), 228(1): 1-13 (2017).
[60] Gunture Kaushik J., Garg A.K., Saini D., Khare P., Sonkar S. K., Pollutant Diesel Soot Derived Onion-like Nanocarbons for the Adsorption of Organic Dyes and Environmental Assessment of Treated Wastewater, Ind. Eng. Chem. Res. (IECR), 59(26): 12065-12074 (2020).