The Effects of Main Formulation and Process Parameters on Characteristics of Frankincense Essential Oil Microemulsions

Document Type : Research Article


1 Department of Chemical Engineering, Ahar Branch, Islamic Azad University, Ahar, I.R. IRAN

2 Faculty of Engineering, Tabriz Branch, Islamic Azad University, Tabriz, I.R. IRAN

3 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz z, I.R. IRAN


The frankincense essential oil was successfully incorporated into nano-sized microemulsions systems through low energy self-emulsification technique. The effects of main formulation parameters, namely, surfactant, co-surfactant, essential oil, and water concentrations, as well as the mixing rate and temperature on mean particle size, polydispersity (PDI), turbidity
and antioxidant activities of colloidal frankincense essential oil nanoparticles, were investigated. The results show that all studied independent parameters affect the most characteristics of frankincense essential oil microemulsions, significantly. The antibacterial activities of essential oils were also considerably increased as incorporated into nano-sized microemulsions. It resulted that the most desired frankincense essential oil microemulsions, with desired characteristics (less particle size, size distribution, turbidity, and greater antioxidant activity) could be obtained using high concentrations of surfactant (0.7 g), medium concentrations of co-surfactant, essential oil and water (0.2 g, 0.1 g, and 9.2 mL, respectively), and medium levels of mixing rate and temperature (500 rpm and 40 °C). Thus, by tuning the formulation or process parameters the most desired nano-sized essential oils can be prepared as natural preservers or health-promoting agents for various food and beverage applications.


Main Subjects

[1] Anarjan N., Fahimdanesh M., Jafarizadeh-Malmiri H., β-Carotene Nanodispersions Synthesis by Three-Component Stabilizer System Using Mixture Design, J. Food Sci. Technol., 54(11): 3731-3736 (2017).
[2] Bakkali F., Averbeck S., Averbeck D., Idaomar M., Biological Effects of Essential Oils – A Review, Food Chem. Toxicol., 46(2): 446-475 (2008).
[4] Zahedi M., Memar Maher B., Anarjan N., Hamishehkar H, Licorice-Garlic-Fennel Essential Oils Composite Nanoparticles as Natural Food Preservatives, Int.J. nanomedicine., 12 (3): 239-251 (2021).
[5] Siddiqui M.Z., Boswellia Serrata, a Potential Antiinflammatory Agent: An Overview, Indian J. Pharm. Sci., 73(3): 255-261 (2011).
[6] dos Santos P.P., Andrade L.d.A., Flôres S.H, Rios A.d.O., Nanoencapsulation of Carotenoids: A Focus on Different Delivery Systems and Evaluation Parameters, J. Food Sci. Technol., 55(10): 3851-3860 (2018).
[7] Kazemi M., Zarandi M., Zand Monfared M.R., Preparation of Permanent Red 24 Nanoparticle by Oil in Water Microemulsion, Iran J. Chem. Chem. Eng. (IJCCE), 39(6): 43-49 (2020).
[8] Shi F, Zhao J.-H., Liu Y., Wang Z., Zhang Y.-T., Feng N.-P., Preparation and Characterization of Solid Lipid Nanoparticles Loaded with Frankincense and Myrrh Oil, Int.J. Nanomedicine, 7: 2033-2043 (2012).
[12] El Sadek M.M., Magd S.A., Hassan S.Y., Mostafa M.A., Synthesis, Reactions and Antioxidant Activity of 5-(3', 4'-dihydroxy-tetrahydrofuran-2'-yl)-2-methyl-3-carbohydrazide, Iran J. Chem. Chem. Eng. (IJCCE), 38(6): 229-249 (2019).
 [13] Moghimi R., Ghaderi L., Rafati H., Aliahmadi A., McClements D.J., Superior Antibacterial Activity of Nanoemulsion of Thymus Daenensis Essential Oil Against E. coli, Food Chem.,194: 410-415 (2016).
[15] Sharif H.R., Goff H.D., Majeed H., Liu F., Nsor-Atindana J., Haider J., Liang R., Zhong F., Physicochemical Stability of β-carotene and α-tocopherol Enriched Nanoemulsions: Influence of Carrier Oil, Emulsifier and Antioxidant, Colloids Surf., A, 529: 550-559 (2017).
[16] Jaberi N., Anarjan N., Jafarizadeh-Malmiri H., Optimization the Formulation Parameters in Preparation of α-tocopherol Nanodispersions Using Low-energy Solvent Displacement Technique, Int. J. Vitam. Nutr. Res., 90(1-2): 5-16 (2019).
[18] Khadka P., Ro J., Kim H., Kim I., Kim J. T., Kim H., Cho J.M., Yun G., Lee J, Pharmaceutical Particle Technologies: An Approach to Improve Drug Solubility, Dissolution and Bioavailability. Asian J. Pharm. Sci., 9(6): 304-316 (2014). 
[19] Saberi A.H., Fang Y., McClements D.J., Fabrication of Vitamin E-enriched Nanoemulsions: Factors Affecting Particle Size Using Spontaneous Emulsification, J. Colloid Interface Sci., 391: 95-102 (2013).
[20] Turk M., Mathe C., Fabiano-Tixier A.-S., Carnaroglio D., Chemat F., Parameter Optimization in Microwave-assisted Distillation of Frankincense Essential Oil, C. R. Chim., 21(6): 622-627 (2018).
[21] Xue J., Zhong Q., Thyme Oil Nanoemulsions Coemulsified by Sodium Caseinate and Lecithin, J. Agric. Food Chem., 62(40): 9900-9907 (2014).
[22] Gräbner D., Hoffmann H., “Rheology of Cosmetic Formulations”. In: Sakamoto K., Lochhead R.Y., Maibach H.I., Yamashita Y. (eds), Cosmet. Sci. Technol, Elsevier, pp. 471-488, Amsterdam (2017).
[23] Saberi A.H., Fang Y., McClements D.J., Effect of Glycerol on Formation, Stability, and Properties of Vitamin-E Enriched Nanoemulsions Produced using Spontaneous Emulsification, J. Colloid Interface Sci., 411: 105-113 (2013a).
[24] Magdassi S., Frank S.G., Formation of oil-in-glycerol/water emulsions, J. Dispersion Sci. Technol., 7(5): 599-612 (1986).
[26] Anarjan N., Mirhosseini H., Baharin B.S., Tan C.P., Effect of processing conditions on physicochemical properties of astaxanthin nanodispersions, Food Chem., 123(2): 477-483 (2010).
[27] Joung H.J., Choi, M.J., Kim J.T., Park S.H., Park H.J., Shin G.H., Development of Food-Grade Curcumin Nanoemulsion and its Potential Application to Food Beverage System: Antioxidant Property and in Vitro Digestion, J. Food Sci., 81(3): 745-753 (2016).
[28] Anton N., Vandamme T.F., The universality of low-energy nano-emulsification, Int. Pharmaceutics, 377(1): 142-147 (2009).
[29] Anarjan N., Jaberi N., Yeganeh-Zare S., Banafshehchin E., Rahimirad A., Jafarizadeh-Malmiri H., Optimization of Mixing Parameters for α-Tocopherol Nanodispersions Prepared Using Solvent Displacement Method, J. Am. Oil Chem. Soc., 91(8): 1397-1405 (2014).
[30] Bhargava K., Conti D.S., da Rocha S.R.P., Zhang Y., Application of an Oregano Oil Nanoemulsion to the Control of Foodborne Bacteria on Fresh Lettuce, Food Microbiol., 47: 69-73 (2015).
[31] Donsì F., Annunziata M., Sessa M., Ferrari G., Nanoencapsulation of Essential Oils to Enhance Their Antimicrobial Activity in Foods, LWT-Food Sci. Technol., 44(9): 1908-1914 (2011).
[32] Zhang Z., Vriesekoop F., Yuan Q., Liang H., Effects of Nisin on the Antimicrobial Activity of d-Limonene and its Nanoemulsion, Food Chem., 150: 307-312 (2014).
[33] Mikaeil B., Maatooq G., Badria F., Amer M., Chemistry and Immunomodulatory Activity Frankincense Oil. Z. Naturforsch., C, J. Biosci., 58: 230-238 (2003)
[34] Van Vuuren S.F., Kamatou G.P.P., Viljoen A.M., Volatile Composition and Antimicrobial Activity of Twenty Commercial Frankincense Essential Oil Samples, S. Afr. J. Bot., 76(4): 686-691 (2010)