Optimization of Chalcogenide CdTe, CZTS and CZTSe Solar Cells PerformancesUsing Cd1-xZnxS Buffer Layer

Document Type : Research Article

Authors

1 Materials and Electronic Systems Laboratory, University of Bordj-BouArreridj, El-Anasser, 34265 Bordj-Bou-Arreridj, ALGERIA

2 Department of Physics Engineering (13b)/Faculty of Science and Letters/Istanbul Technical University, Maslak, Istanbul, 34469, TURKEY

3 Electronic Department, Faculty of Technology, University of Msila, 28000 Msila, ALGERIA

4 Laboratory of Materials Physics and Its Applications, University of Mila, 28000 Msila, ALGERIA

5 Research Center in Industrial Technologies CRTI, B. O. Box 64, Cheraga, 16014, Algiers, ALGERIA

6 Department of Physics, Division of Science & Technology, University of Education, Lahore, PAKISTAN

Abstract

Cadmium zinc sulfide (Cd1-xZnxS) as a wide-band gap material with x=0.7 was used inthe present work as an alternative buffer material to CdS to improve the efficiency ofZnO/Cd1-xZnxS/CdTe, ZnO/Cd1-xZnxS/CZTS and ZnO/Cd1-xZnxS/CZTSe thin film solar cells. The photovoltaic parameters such as efficiency, open circuit voltage (Voc), short circuit current density (Jsc) and the fill factor (FF) have been computed using one-dimensional simulation programs such as Solar Cell Capacitance Simulator (SCAPS v3.3) and Analysis of Microelectronic and Photonic Structures (AMPS-1D). An improvement in conversion efficiency isnoticed compared to the structure with the CdS buffer layer. It is found that the efficiencies of Cd1-xZnxS/CZTSe and Cd1-xZnxS/CdTeareincreased from 12.61% to 15.35% and from 17.53% to 18.83%, respectively. The simulations were performed for 1 µmthick absorber layers.It is also found that the efficiency rises from 12.53% to 13.23% with Cd1-xZnxS/CZTS structure for CZTS thickness of 2.5 µm. Moreover, the quantum efficiency (QE) characteristics display the maximum value of more than 80% in the visible rangeand the structures presented a slight improvement in the short wavelength. The present study shows that the suggested structures with aCd1-xZnxS buffer layer may improve the efficiency and reduce the amount of Cd, which is a toxic element.

Keywords

Main Subjects


[1] Vidal R., Alberola-Borràs J.-A, Sánchez-Pantoja N., Mora-Seró I., Comparison of Perovskite Solar Cells with other Photovoltaics Technologies from the Point of View of Life Cycle Assessment, Adv. Energy Sustainability Res., 2(5): 2000088 (2021).
[2] Bouarissa A., Gueddim A., Bouarissa N., Maghraoui-Meherezi H., Modeling of ZnO/MoS2/CZTS Photovoltaic Solar Cell Through Window, Buffer and Absorber Layers Optimization, Mater. Sci. Eng., B, 263: 114816 (2021).
[3] Benabbas S., Rouabah Z., Bouarissa N., Chelali N., The Role of Back Surface Field SnS Layer in Improvement of Efficiency of CdTe Thin Film Solar Cells, Optik, 127(15): 6210-6217 (2016).
[4] Matin M.A., Aliyu M.M., Quadery A.H., Nowshad A., Prospects of Novel Front and Back Contacts for High Efficiency Cadmium Telluride Thin Film Solar Cells from Numerical Analysis, Sol. Energy Mater. Sol. Cells, 94(9): 1496-1500 (2010).
[5] Simya O.K., Mahaboobbatcha A., Balachander K., A Comparative Study on the Performance of Kesterite Based Thin Film Solar Cells Using SCAPS Simulation Program, Superlattices Microstruct., 82: 248-261 (2015).
[6] Simya O.K., Mahaboobbatcha A., Balachander K., Compositional Grading of CZTSSe Alloy Using Exponential and Uniform Grading Laws in SCAPS-ID Simulation, Superlattices Microstruct., 92: 285-293 (2016).
[8] Hossain M.D.S., Nowshad A., Razykov T., prospects of Back Contacts with Back Surface Fields in High Efficiency ZnxCd1-xS/CdTe Solar Cells from Numerical Modeling, Chalcogenide Lett., 8(3): 187-198 (2011).
[9] Hossain M.D.S, Nowshad A., Matin M.A., Aliyu M.M., Razykov T., Sopian K., A Numerical Study on the Prospects of High Efficiency Ultra Thin ZnCdS/CdTe Solar Cell, Chalcogenide Lett., 8(3): 263-272 (2011).
[10] Compaan, A.D., The Status of and Challenges in CdTe Thin-Film Solar-Cell Technology, Mat. Res. Soc. Symp. Proc., 808: 384-394 (2003).
[11] Clayton A.J., Irvine S.J.C., Jones E.W., Kartopu G., Barrioz V., Brooks W.S.M., MOCVD of Cd(1−x)Zn(x)S/CdTe PV Cells Using an Ultra-Thin Absorber layer, Sol. Energy Mater. Sol. Cells, 101: 68-72 (2012).
[12] He X., Song Y., Wu L., Li C., Zhang J., Feng L., Simulation of High-Efficiency CdTe Solar Cells with Zn1-xMgxO Window Layer by SCAPS Software, Mater. Res. Express, 5(6): 065907-065912, (2018).
[13] Chu T.L., Chu S.S., Ferekides C., Wu C.Q., Britt J., Wang C., 13.4% Efficient Thin‐Film CdS/CdTe Solar Cells, J. Appl. Phys.,70:7608(1991).
        DOI:10.1063/1.349717.
[14] Ferekides C., Britt J.Y., Killian L., “High Efficiency CdTe Solar Cells by Close Spaced Sublimation”, Twenty Third IEEE Photovoltaic Specialist Conference p.389, New York, USA (1993).
[16] Malkeshkumar P., Abhijit R., Enhancement of Output Performance of Cu2ZnSnS4Thin Film Solar Cells - A Numerical Simulation Approach and Comparison to Experiments, Phys. B: Phys. Cond. Matter., 407(21):4391-4397 (2012).
[17] Omrani M.K., Minbashi M., Memarian N., Kim D-H., Improve the Performance of CZTSSe Solar Cells by Applying a SnS BSF Layer, Solid-State Electron., 141:50-57 (2018).
[18] Heriche H., Bouchama I., Bouarissa N., Rouabah Z., Dilmi A., Enhanced Efficiency of Cu(In,Ga)Se2Solar Cells by Adding Cu2ZnSn(S,Se)4Absorber Layer, Optik, 144:378-386 (2017).
[19] CantasA., Turkoglu F., Meric E., Akca F.G., Ozdemir M., Tarhan E., Ozyuzer L., Aygun G., Importance of CdS Buffer Layer Thickness on Cu2ZnSnS4 Based Solar Cell Efficiency, J. Phys. D: Appl. Phys., 51:275501 (2018).
[20] Gao S., Jiang Z., Wu L., Ao J., Zeng Y., Sun Y., Zhang Y., Interfaces of High-Efficiency Kesterite Cu2ZnSnSe4Thin Film Solar Cells, Chin. Phys. B, 27(1):018803 (2018).
[21] Emrani A., Vasekar P., Westgate C., Effects of Sulfurization Temperature on CZTS Thin Film Solar Cell Performances, Sol. Energy, 98(C): 335-340 (2013).
[22] Sunghun J., Gwak J., Yun J.H., Ahn S.J., Nam D., Cheong H., Ahn S., Cho A., Shin K.S., Yoon K.H., Cu2ZnSnSe4Thin Film Solar Cells Based on a Single-Step Co-Evaporation Process, Thin Solid Films, 535:52-56 (2013).
[26] Negin M.; Ali Reza K.; Ebrahim A.S.; Sheyda B., A Study of ZnO Buffer Layer Effect on Physical Properties of ITO Thin Films Deposited on Different Substrates, Iran. J. Chem. Chem. Eng. (IJCCE), 31(1): 37-42 (2012).
[27] Nowshad A., Sopian K., Konagai M., Numerical Modeling of CdS/CdTe and CdS/CdTe/ZnTe Solar Cells as a Function of CdTe Thickness, Sol. Energy Mater. Sol. Cells, 91(13):1202–1208 (2007).
[28] Kuhn L., Reggiani U., Sandrolini L., Gorji N.E., Physical Device Modeling of CdTe Ultrathin Film Solar Cells, Sol. Energy, 132:165-172 (2016).
[29] Hossain M.S., Rahmana K.S., Karimd M.R., Aijaz M.O., Dard M.A., Shar M.A., Misrana H., Nowshad A., Impact of CdTe Thin Film Thickness in ZnxCd1-xS/CdTe Solar Cell by RF sputtering, Sol. Energy, 180(1):559-566 (2019).
[30] Akbarnejad E., Ghorannevis Z., Mohammadi E., Fekriaval L., Correlation between Different CdTe Nanostructures and the Performances of Solar Cells Based on CdTe/CdS Heterojunction, J. Electroanal. Chem., 849:113358 (2019).
[31] Burgelman et al., SCAPS manual, Department of Electronics and Information Systems (ELIS), University of Gent, Belgium (2021).
[32] Fonash S., Arch J., Cuiffi J., Hou J., Howland W., A manual for AMPS-1D for Windows 95/NT a one-dimensional device simulation program for the analysis of microelectronic and photonic structures. Pennsylvania State Univ.; 1997.
[33] Reinders A., Verlinden P., Sark W.V., Freundlich A., “Photovoltaic Solar Energy: from Fundamentals to Applications”, John Wiley & Sons, Ltd (2017).
[35] Boudour S., Bouchama I., Hadjab M., Laidoudi S., Optimization of Defected ZnO/Si/Cu2O Heterostructure Solar Cell, Opt. Mater., 98:109433 (2019).
 DOI:10.1016/j.optmat.2019.109433.
[36] Clayton A. J., Baker M. A., Babar S., Grilli R., Gibson P. N., Kartopu G., Irvine S. J. C., Effects of Cd1-xZnxS Alloy Composition and Post-Deposition Air Anneal on Ultra-Thin CdTe Solar Cells Produced by MOCVD, Mater. Chem. Phys., 192:244-252 (2017).