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ABSTRACT: In this work, we tried to explore the review of CO2 capture using absorption and 

adsorption technologies. For this purpose, also, besides the literature review investigates the effect 

of some operational parameters such as temperature, pressure, amine concentration, solution flow 

rate, and the adsorbent loading on the CO2 removal efficiency and CO2 capture capacity. The results 

demonstrated that the flow rate of liquid and concentration of amine has a positive effect on the 

removal efficiency and the CO2 flow rate has a negative effect. The results in the adsorption part 

indicated the pressure had a positive effect on the equilibrium adsorption capacity and the adsorbent 

loading and temperature had a negative effect. Moreover, the absorption of CO2 into three ZrO2, 

TiO2, and ZnO nanofluids at Pz and DEA solution was investigated. The results represented that  

the loading of nanoparticles and speed of the stirrer have an optimum value for CO2 removal efficiency. 

The optimum value was 0.05 wt%, 0.05 wt%, and 0.1 wt%, for ZrO2, TiO2, and ZnO nanoparticles, 

respectively. Furthermore, the CO2 removal efficiency increased first with an increase of the stirring 

speed up to 200 rpm, and then begins to decrease as the stirrer speed increased above 200 rpm.  
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INTRODUCTION 

According to the Intergovernmental Panel on Climate 

Change (IPCC), Global Greenhouse Gas (GHG) emissions 

must be reduced by 50 to 80 percent by 2050 to avoid  

the dramatic consequences of global warming [1, 2]. 

Scenarios from the International Energy Agency (IEA) 

indicate that the potential for reduced CO2 emissions 

through enhanced energy efficiency and increased 

renewable energy production is limited. According to  

the IPCC, a delay in CO2 emission reductions can lead  

to dramatic consequences, and a new strategy for reducing 

CO2 emissions as soon as possible is required. CO2 Capture 

is a technology with the potential for large reductions  

 

 

 

in CO2 emissions within 10 to 20 years. Therefore,  

the strategy for reducing global CO2-emission must be  

a combination of (1) increased energy efficiency, (2) more 

renewable energy production, and (3) a wide implementation. 

By establishing stronger incentives favoring energy efficiency 

and renewable energy, global CO2 emissions can be reduced 

by approximately 70 percent by 2050 compared to emissions 

today. Therefore, in the present study, we have tried to study 

all CO2 emission methods and use the best method with 

optimal performance for different scenarios. 

The recent importance of greenhouse gas emissions, 

and their potential for universal warming [3, 4], has appointed  
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concerns about the release of gases such as H2S and CO2 [5, 6]. 

With increasing environmental and political requests [7], 

impressive methods for CO2 capture from the atmosphere 

will become increasingly significant [8-10]. Multitude 

types of processes produce CO2. A majority of these 

involve fossil fuel combustion, resulting in the emissions 

of greenhouse gases (e.g., H2S, SOx, NOx, CO2). 

Given the extent of CO2 emission processes into  

the atmosphere, it is crucial to recognize suitable goals  

for improvement [1, 11, 12]. Both human and natural sources 

contribute to the continuous emission of greenhouse gases [13]. 

While natural emissions from forest fires, volcanoes, and 

the decomposition of biomass are considerable, they  

are relatively fixed from year to year [14]. Man-made CO2 

released from automobiles, manufacturing, and power 

plants has increased steadily since the industrial revolution 

and is a contributing agent to universal warming and  

has become the main worry [15, 16]. Combustion of fossil  

fuel causes >95% of the CO2 released annually [17]. The balance 

emanates from processes such as cement manufacturing,  

and steel, iron, and ammonia production [18]. 

Due to the significant value of emissions from  

the combustion of fossil fuel, it is effective for the analysis 

of this source. CO2 emissions are represented in Fig. 1  

for five point-source parts, including the agriculture, 

commercial and residential, electricity generation, 

industrial, and transportation sectors (EPA,2018).  

A numerous range of processes has been extended  

to CO2 removal from gas streams [19-21] including 

adsorption, absorption, cryogenics, and membranes [22, 23]. 

With membrane separation, high-purity streams are strict 

to get, exclusively on the scale of CO2 removal from power 

plants. Membrane separation technology offered many 

advantages due to its inherent attributes such as energy-

saving and continuous operation compared to traditional 

methods like absorption and adsorption processes [24]. 

Cryogenic separation of CO2 causes liquid CO2 flow,  

and high pressure. However, the refrigeration cost is 

expensive, and requires water removal, increasing the 

process cost. This technology is generally only intended 

for very concentrated CO2 streams. Adsorption is one  

of the new concepts for CO2 removal [25]. Depending on 

the conditions, multiple adsorbents have been used (Table 1). 

Adsorption has been examined, but low CO2 selectivity 

and poor capacity restrict the potential for usage to CO2 

removal [39]. Up to now, adsorption and absorption 
 

 

 
Fig. 1: CO2 emissions from combustion of fossil fuel in the 

U.S.A.; (2018), total emissions: 6677 Tg CO2 Eq. 

 

methods provide the most economical to separate CO2 

from bulk flows [40]. That’s why; this study focuses on the 

expansion of more effective adsorption and absorption 

technology [41]. The CO2 absorption into physical [42]  

or chemical solvents [43] is a well-developed technology 

that has been used for many commercial processes [37, 44], 

including ammonia production and gas treatment [45, 46]. 

There has been a lot of research on this technology over 

the last 50 years, mainly on developing an understanding 

of the specific properties of the solvent. While a significant 

portion of work has been published on specific amines, 

little research has been outcome on comprehension or 

indicating complex mixtures, which are often the most 

effective technologies. The main purpose of this study was 

to explore the review of CO2 capture using absorption and 

adsorption technologies [47-50]. For this purpose, we tried,  

in addition to literature reviewing, to investigate the effect 

of operational parameters such as temperature, flow rate, 

pressure, and the adsorbent loading on the CO2 removal 

efficiency and CO2 capture capacity. So, in the present 

work in addition to the effective operating parameters  

in both adsorption and adsorption processes, the effect  

of nanoparticles on absorption has also been studied. 

Therefore, it can be a good referral for a comprehensive 

study of the absorption process. 

 

RESULTS AND DISCUSSION 

Carbon dioxide capture by absorption 

One of the highest, and most investigated, acid gas 

removal technologies is an absorption process that uses  

a chemical solvent [51, 52]. Processes like this are usually  
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Table 1: CO2 adsorption with different adsorbents. 

Sorbent Process Temperature (K) Capacity (mmol/g) Ref. 

NaOH Fixed-bed reactor 298-338 2.82-29.75 [26] 

Polyethyleneimine Termogravimetric adsorption 348 3.02 [27] 

Monoethanolamine Thermogravimetric adsorption 303 1.00 [28] 

Graphene Oxide/TiO2 

Nanocomposite 
Fixed-bed reactor 298 0.77-0.95 [17] 

AC/NaOH Fixed-bed reactor 293-353 0.48-8.69 [29] 

Molecular sieve 13X Pressure swing adsorption 298 2.80-3.60 [30] 

Active carbon–KOH Pressure swing adsorption 298 - [31] 

NaOH-granular coconut shell AC Fixed-bed reactor 332 27.10 [32] 

NaOH/CaO Temperature swing adsorption 350 3.00 [33] 

Graphene - 195 0.80 [34] 

Na2CO3 Thermogravimetric adsorption 323-343-70 2.30 [35] 

Na2CO3/Al2O3 Fixed-bed reactor 323-353 - [36] 

NaY zeolites/ Si/Al Batch reactor 323 1.55-6.89 [37] 

K2CO3/Al2O3 Fixed-bed reactor 328-573 0.44-0.63 [38] 

 

used in natural gas and ammonia production [53, 54]. 

There are multiple types of this flow sheet [55-58], 

including an isothermal and a temperature process.  

In many standard absorption processes, the variation  

of temperature swing (Fig. 2), a gas flow including CO2 

enters a column’s bottom. The treated gas and CO2 are 

released and exit the absorber’s top. A solvent enters  

the top of the column and counter-currently contacts 

the gas phase in different absorbers such as packed column, 

tray column, and bubble column. The CO2 removal 

efficiency of absorption was calculated Eq. (1) [59]: 

 2
CO removal efficiency %      (1) 

2 2

2

CO ,in CO ,out

CO ,in

y y
100
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Packed column apparatus 

As shown in Fig. 3, the rich solvent, and the CO2  

are absorbed in the exit of the absorber. The rich solvent 

is heated in an exchanger and pumped to the top of  

a stripper. The CO2 is recovered from a concentrated 

CO2 flow. Somewhat heat is recovered from the lean 

solvent, although the solvent needs to be more cooled 

before its reuse in the column. 

Depending on the specific usage of the process, 

different conditions occur. Table 2 represents some 

process conditions in absorber/stripper applications to CO2 

removal in a power plant setting. Generally, ammonia 

processing and natural gas treatment include high total 

pressures and concentrated CO2 flow [60]. As well as,  

the outlet concentration limits are adjusted according  

to process requirements. Treating power plant flue gas  

will be the same in that CO2 concentrations range from 

10 to 15 vol% and 2 to 3 vol% for coal-fired plants and 

natural gas, respectively, but the pressure will be close  

to atmospheric. The treatment would goal about 90% removal. 

 

Bubble column apparatus 

Bubble column reactors (Fig. 4) have a vast range of 

industrial applications due to the easy design, selectivity 

for the favorable product, very involved hydrodynamic 

behavior, and well heat and mass transfer properties [61]. 

Bubble columns are applied in a variety of chemical 

processes, such as oxidation, alkylation, and fermentation 

reactions, Fischer–Tropsch synthesis, coal liquefaction, 

and effluent treatment [62, 63]. In the bubble reactors,  

the gas phase exists as a dispersed phase in a liquid phase; 

thus, the liquid phase’s mixing behavior is usually 

influenced by the rising bubbles agitating action. In bubble
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Fig. 2: Scheme diagram of absorber/stripper, H1 (Cross Exchanger); H2 (Cooler); H3 (Exchanger); Oi (Heat). 

 

 

Fig. 3: Scheme diagram of packed column [57]. 
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Table 2: Process conditions in absorber/stripper applications to CO2 removal. 

Process Inlet CO2 (vol %) Outlet CO2 (vol %) Ptot (atm) 

Natural gas 0-50 1-2 10-70 

Ammonia 17-19 0.01-0.2 30 

Coal power plant 10-15 1-1.5 1-1.3 

Natural gas power plant 2-3 0.2-0.3 1-1.3 

 

 

Fig. 4: Scheme diagram of the bubble column. 

 

columns, the gas phase moves in one of the heterogeneous 

or homogeneous regimes, and dispersed gas is known  

to be inherently unsteady. A gas bubble’s dispersion  

in liquids is the basis of many heats and mass transfer 

operations in chemical engineering action. The efficiency 

of the stirrer bubble column appertains to the physical 

bubbles characteristics such as bubble size, bubble size 

distribution, gas holdup, bubble–bubble interactions, 

bubble rise velocity, and mixing rate. Also, the economy 

of bubble columns and the design parameters are gas-

liquid interfacial region, flow regime, bubble size 

distribution, mass transfer coefficient, and coalescence of 

bubbles. They are generally modeled by optimizing a plug-

flow reactor with axial dispersion. The most traditional 

design of the bubble column prefers a high height-to-diameter 

ratio to allow system hydrodynamics to be in a fully 

developed state. Some prior work on CO2 absorption has 

been published and is summarized in Table 3.  

 

Solvents' effect on CO2 absorption 

Multitude solvents have been used to purify gas [78], 

but in general, the most effective is considered hot 

potassium carbonate (hotpot) or aqueous amine solvents [79-81]. 

Amines have superiority over the hotpot process in  

that the absorption rate of CO2 is fast; nevertheless [66, 81-83], 

the absorption heat is also high. On the contrary [61, 65, 84, 85], 

absorption into potassium carbonate has an absorption heat 

like to physical solvents but is confined by slow absorption 

rates. Usually, physical solvents are utilized in high-

pressure usages.  Some of the more common physical 

solvents are Purisol, Selexol, and Rectisol. Since physical 

solvents do not react with CO2, the solvent is not consumed 

at high partial pressures [86, 87]. In addition, the absorption 

heat is restricted to the enthalpy of physical absorption 

[88], which is less than the reactive solvents [89, 90].  

The processes are restricted by slow rates and selectivity 

of absorption [91].  

In CO2 removal investigation from flue gas, the current 

advanced technology is commonly considered a 30 wt% 

aqueous MEA solution. MEA has a high absorption  

rate [91-94] and a high capacity for CO2, but its performance 

is limited by multiple factors, containing corrosion issues 

and high absorption heat [95, 96]. One way to modify 

solvent performance is to combine amines or promote 

potassium carbonate with amines. The thought is to add  

a fast-reacting amine, such as MEA to a low absorption 

heat, such as MDEA or K2CO3, to take benefit of both 

properties. Most of this technology is used in the production 

of ammonia, where DEA-promoted K2CO3 is common. 

 

Potassium Carbonate/Piperazine solution for CO2 

Capture 

A new solvent, containing concentrated aqueous Pz 

and potassium carbonate, is used for the removal of CO2 

from waste gas streams. The Pz structure and its 

formatives in an aqueous solution with CO2 are indicated 

in Fig. 5. Pz dicarbamate (Pz(COO-)2) and Pz carbamate 

(PzCOO-) are products of the CO2 reaction with Pz. 

protonated Piperazine carbamate (H+PzCOO-) and 

Protonated Piperazine (PzH+) are known stable molecules 

 

Gas

Gas

Liquid

Liquid
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Table 3: Studies on CO2 absorption in bubble columns. 

Ref. Description Solution 

[64] 

- The gas velocity, pressure, and liquid viscosity effect on gas-liquid interfacial area and gas holdup. 

- The positive effect of gas velocity on gas holdup 

- The positive effect of gas velocity and pressure on gas-liquid interfacial area 

DEA 

[65] - The nanoparticles effect on hydrodynamic, and absorption performance 
Pz/ ZnO, TiO2 and ZrO2 

nanoparticles 

[66] 

- The effect of some parameter such as liquid viscosity, pressure, and gas velocity on hydrodynamic 

system. 

- Increasing gas holdup and   gas-liquid interfacial area with increasing gas velocity, and pressure 
- The influences of absorbent and gas rate on absorption performance 

Pz 

[53] 

- The effect of CO2 partial pressure, Pz concentration, temperature, and the stirrer speed upon the 

removal efficiency and absorption flux 

- Loading and removal efficiency of CO2 have been analyzed 

Pz 

[67] 
- Absorption kinetics has been analyzed 

- Offer model for mass transfer characteristics 
Mg(OH)2 

[68] 
- The influence of slurry concentration, gas flow rate, and absorbent concentration on the absorption 

performance 

- The positive effect of absorbent and   gas flow rate on the absorption performance 

Slurry of 

K2CO3 and Li2CO3 

[69] 

- saturated the solution by increasing the gas flow rate 

- The positive effect of amine concentration and gas flow rate on the gas-liquid interfacial area 
- The initial concentration of amine to an optimum value has a positive effect on the mass transfer 

coefficient 

MDEA 

[70] 
- The effect of solution concentration and gas flow rate on the gas-liquid interfacial area and bubbles 

diameter 
TEA 

[71] 
- The effect of solution concentration, solid loading, and gas flow rate on the gas-liquid interfacial 

area and mass transfer coefficient 

NaOH,  Activated carbon and 

Alumina oxide 

[72] 
- The effect of the solution concentration and gas velocity on the gas-liquid interfacial area and mass 

transfer coefficient 

Pyrrolidone, Methyl Pyrrolidone 

and Ethyl Pyrrolidone 

[73] - The influence of adding ethanol in CO2 absorption H2O 

[74] 
- The overall mass transfer coefficient, the absorption rate, and the determination of the optimum 

points 
DEEA/EEA 

[75] - The effect of nanoparticles on hydrodynamic and absorption performance 
MEA/Al2O3, TiO2, and SiO2  

nanoparticles 

[76] 
- The effect of gas and liquid flow rate, initial concentration of amine, CO2 partial pressure on the 

removal efficiency, mass transfer flux and CO2 loading 
DEA 

[77] - The nanoparticles effect on the hydrodynamic and mass transfer performance 
Pz/ ZnO, TiO2, and ZrO2  

nanoparticles 

 

 

Fig. 5: Structure of Pz in the presence of CO2. 

 

at moderate pH. A diprotonated Pz exists below a pH of 

approximately 5.5, but conditions in this work never close 

to low pH, so this species is out of view.  

This solvent has multiple advantages over traditional 

amines [97]. First, due to the Pz being a diamine, the solvent 

can react with two CO2 moles per one amine mole. 

Coupled with the potassium carbonate in the solution,  

the solvent has the possibility of a higher CO2 capacity than 

other amines. Also, the two functional groups of amines  

will appropriately affect the absorption rate. Second, the Pz 

has a high pKa in comparison to MEA [98]. A high pKa 

usually results in rapid absorption. Third, the high 

bicarbonate/carbonate value in the solution acts as a buffer, 

making less the protonation of the amine and making more  
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amine available to react with CO2. However public studies 

of the Pz/K2CO3 solvent’s performance are usual, and 

kinetics and thermodynamics detailed data are not 

accessible in the open literature [99]. And also, Pz/K2CO3 

properties have not been previously investigated. Other 

work, although not specifically on Pz, is closely related  

to this research through modeling techniques and methods 

that should be mentioned. Austgen et al. [100] developed 

the rigorous thermodynamic model applied and used  

it to model DEA/MEA-promoted MDEA. Glasscock [101] 

began a study on the modeling of CO2 absorption into 

MDEA/DEA and DEA. These researches displayed  

the multiple modeling techniques’ ability to effectively 

represent amine combination over a wide range of 

conditions; however, none of them specifically show high 

ionic strength solvents. 

 

Nanoparticles' effect on CO2 capture 

In recent years, different techniques have been applied 

to improve heat/mass transfer and get better absorption 

processes [102, 103]. The technique of these modifications 

is usually classified into mechanical purification, chemical 

treatment, and improvement of fluid properties [104-106]. 

Recently, nanofluids have been recognized as high-

potential solvents [107] and significant mass transfer 

media [108]. A nanofluid is a suspension containing 

particles on a nano-scale that are constantly dispersed  

in a base fluid [109]. The nano-particle sizes are smaller 

than 100 nanometers. The nanoparticles are made of 

metals such as iron, nickel, silver, copper, and or metal 

oxides such as copper oxide (CuO), aluminum oxide 

(Al2O3), Fe2O3, FeO, ZrO2, and TiO2. Nanofluids having 

high dispersion stability are compared to base fluids and 

higher surface area and need lower pumping energy, and 

low sedimentation speed [110]. Thus, nanofluids can 

potentially be applied in a wide range of various usages. 

According to Krishnamurthy et al. [111] experiment,  

a color diffuses faster in a nanofluid than in water. They 

explained that the Brownian motion of the nanoparticles 

and shuttle effect causes convection in the nanofluids. CO2 

absorption is one of the most significant applications of 

nanofluids in gas absorption. Many studies have been performed 

to increase CO2 absorption. Pineda et al. [112] considered 

the Al2O3/methanol and SiO2/methanol nanoparticles' 

effect using a tray column on CO2 absorption. Their results 

represented that the absorption capacity of the Al2O3 and 

SiO2 nanofluids increased up to 9.4% and 9.7%, 

respectively, at the 0.05 vol% nanoparticles loading.  

In another research, Pineda et al. [113, 114] investigated 

the TiO2, Al2O3, and SiO2 nanoparticle’s effect on CO2 

absorption in an Annular Contactor (AC) with a trays 

column. The results of their research indicated that the 

absorption rate of TiO2, Al2O3, and SiO2 increased up to 

5%, 6%, and 10%, respectively. Lee et al. [115] studied 

showed an increase in CO2 absorption performance  

in a bubble column. The results showed that the absorption 

performance of the Al2O3 and SiO2 nanofluids was enhanced 

up to 4.5% and 5.6%, respectively, at 0.01 vol% 

nanoparticles loading in comparison to methanol-based 

fluids. Jung et al. [116] studied the effect of Al2O3 

nanoparticles in methanol-based fluids on CO2 absorption 

rate using a bubble column. They indicated that the 

absorption performance increased to 8.3% in comparison 

to pure methanol. Pang et al. [117] experimentally 

researched the NH3 absorption intensifies in the silver 

nanofluid during the bubble column. They found that the 

absorption rate was enhanced to 55% at 0.02 wt% 

nanoparticles loading. Ma et al. [118] and Lee et al. [119] 

studied the NH3 heat and mass transfer in the absorption 

process using the Carbon NanoTube (CNT) and Al2O3 

nanoparticles in a bubble column. Their results 

demonstrated the CNT and Al2O3 lead to increasing the 

mass and heat transfer rates significantly. Sumin et al. [120] 

experimentally studied the Al2O3 and CNT nanoparticles' 

influence on CO2 absorption in a stirred thermostatic 

reactor. Samadi et al. [121] proposed a wetted-wall column 

with external magnets. They experimentally understood 

that the Fe3O4 nanofluids could increase the mass transfer 

flux and mass transfer coefficient to 22.35% and 59%, 

respectively. Salimi et al. [122] studied the CO2 absorption 

in the NiO (at 0.01 vol %) and Fe3O4 (at 0.005 vol %) 

nanofluids in the presence of a magnetic field. They 

represented that the mass transfer rate of the NiO and Fe3O4 

nanofluids was enhanced up to 9.5 wt% and 12 wt%, 

respectively, in comparison to based-fluids. Kim et al. [123] 

investigated the CO2 absorption performance in the silica 

(at 0.021 wt%)  nanofluid in a bubble column. The results 

displayed that the absorption rate in the nanofluids  

was enhanced 24 % in comparison to pure water-based 

fluids. After absorption of gas in the nanofluid, the contact 

area was increased because of broken gas bubbles into 

small bubbles with stable  nanoparticles and finally led
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Table 4: Some studies of used various nanoparticles for CO2 absorption. 

Absorbent-Solution System Remarks Ref. 

MDEA- Magnetite nanoparticles Wetted wall column 

- Surrender the effects of the input area 

- Removing creeping resistance by adding surfactant 

- Absorption increased with the solid concentration up to 0.02 vol%. 

[124] 

Al2O3 nanoparticles Stirred reactor 
-The absorption rate and heat transfer rate in nanofluid containing 0.02 
vol% particles were found to be 18% and 29% higher than those base 

fluid, respectively. 

[119] 

2-ethyl-1-hexanol, noctanol and  
2-octanol, Cu, CuO, and Al2O3 

Bubble column 
-The appending of nanoparticles and surfactants enhances the absorption 

performance up to 5.32 times. 
[125] 

Methanol, SiO2, and Al2O3 
nanoparticles 

Bubble column 

-by adding 0.01 vol% of Al2O3 and SiO2 nanoparticles, the absorption 

rate is increased up to 4.5% and 5.6%, respectively, in comparison  

to methanol-based fluids. 

[115] 

Methanol, Al2O3 and SiO2 

nanoparticles 
tray column 

-The maximum absorption rate is enhanced up to 9.4% and 9.7%  
at 0.05 vol% of Al2O3 and SiO2 nanoparticles, respectively, in comparison  

to methanol-based fluids. 

[112] 

MEA, SiO, and Al2O3 
nanoparticles 

Bubble column 
-The absorption rate is enhanced up to 8% compared to the pure MEA 

solution. 
[126] 

CNT and Al2O3 nanoparticles Stirred reactor 

-The absorption rate is weak and enhanced. 

- The stirring speed has a positive effect on the enhancement factor 

 in CNT nanofluid. 

[120] 

MEA, MDEA, SiO2, TiO2, Al2O3, 

and MgO nanoparticles 
Bubble column 

-The performance of MDEA and MEA solutions was similar. 

-Most nanoparticles could remarkably improve the mass transfer. 

-The enhancement factor increased with the increase of the 
nanoparticles concentration up to an optimum value and then decreased. 

[127] 

NaCl, and Al2O3 nanoparticles Bubble column 

- The optimum nanoparticles loading of Al2O3 was 0.01 vol%. 

-The nanoparticles' consequence on the enhancement factor is more 

considerable in the unsaturated state area than in the saturated state area. 

[128] 

Methanol, and Al2O3, nanoparticles Bubble column -The absorption rate is enhanced up to ~8.3%. [129] 

ZnO, and SiO2 nanoparticles Stirred reactor 

-The absorption rate is increased up to 14% and 7% at 0.1 wt% of ZnO 

and SiO2 nanoparticles, respectively. 
- The absorption performance decreases with increasing temperature. 

[130] 

Methanol, Al2O3, SiO2 and TiO2 

nanoparticles 
tray column 

-The absorption performance is increased up to 10%, 6%, and 5%  

of Al2O3, SiO2 and TiO2 nanoparticles, respectively. 
[113] 

Fe3O4 and NiO nanoparticles packed column 

-The mass transfer rate is increased up to 12% and 9.5% of Fe3O4 and 
NiO, respectively. 

- The optimum nanoparticles loading of Fe3O4 and NiO were  

0.005 wt%, and 1.5 wt%, respectively 

[122] 

Pz, TiO2, ZnO, and ZrO2 

nanoparticles 
Bubble column 

- The optimum nanoparticles loading of TiO2, ZnO, and ZrO2 were 

0.01 wt%, 0.05 wt% and 0.01 wt%,respectively. 

-The effect of nanoparticles loading, nanoparticle type, CO2 partial 
pressure, and stirrer speed on the absorption and hydrodynamic 

performance were investigated. 

-The absorption rate of TiO2, ZnO, and ZrO2 is enhanced up to 14.7%, 
16.6%, and 3.7%, respectively. 

[77] 

MDEA, Pz- SiO2 nanoparticles Stirred reactor 
- Absorption rate increased with the solid concentration up to 0.02 vol%. 

- The optimum nanoparticle loading was 0.001 vol%. 
[131] 

 

to an increased absorption rate in the nanofluid. Some 

 open literature has been available on the effect of 

nanofluids to increase CO2 absorption, as shown in  

Table 4. 

Fig. 6 indicates the variation of CO2 removal efficiency 

with the loading of ZnO, TiO2, and ZrO2 nanoparticles  

in the Pz and DEA base fluid. All experiments were performed 

in a continuous bubble column reactor. As shown in this 

figure; the removal efficiency of all nanofluids is higher 

than 57.1%; it is certainly implied that nanofluids  

can increase the absorption rate. It can also be concluded 

from the trend that the removal efficiency increases with 

increasing particle concentration up to 0.05 wt% of ZnO 

and TiO2 nanoparticles and then reduced. In comparison, 

the removal efficiency increased with the increase of ZnO 

nanoparticles loading in all-solid concentration. The maximum 

removal efficiency for Pz/ZnO nanofluid (at 0.1 wt %) is 

80.6. In the other words, the average CO2 removal 

efficiency in the base fluid and optimum concentration  

(at 0.05 wt %) of TiO2, ZnO, and ZrO2 nanofluids  

was carried out 4.6%, 65.3%, 65.6%, and 60.8%, 

respectively. These results mean that the CO2 removal 
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Fig. 6: Variation of CO2 removal efficiency vs. the nanoparticles 

loading in nanofluids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: The stirrer speed effect on CO2 removal efficiency  

in various nanofluids. 

 

efficiency of DEA/ZnO, DEA/TiO2, and DEA/ZrO2 nanofluids 

in comparison with DEA base fluid was increased by 

43.8%, 43.2%, and 33.3 %, respectively. It is undoubted 

that nanoparticles can increase absorption performance. 

The nanofluid mechanism increases the CO2 removal 

efficiency may be for three reasons as follows. Due to  

the Brownian motion, nanoparticles can cause micro-

convection in nanofluids. This micro-convection can improve 

the CO2 absorption performance of the nanofluids. 

Nanoparticles in the nanofluids can cause the grazing  

(or shuttle) effect. However, when the nanoparticles number  

in the solution is numerous, the nanoparticles accumulate 

together that caused a reduction in the Brownian motion 

effect. Besides, with more increase in nanoparticles,  

the viscosity of nanofluid increased and caused a decrease 

in the diffusion coefficient of CO2 and eventually 

decreased the CO2 removal efficiency. 

Fig. 7 presents the variation of CO2 removal efficiency 

with the stirrer speed in different nanofluids (at 0.05 wt%). 

As shown trends in this Figure; the removal efficiency 

increases with an increase in the stirrer speed up to 200 rpm 

because of broken bubbles to small bubbles and increasing 

contact area, and then starts to decrease by increasing 

above 200 rpm. The increasing and decreasing reasons  

for the removal efficiency by the stirrer speed are explained 

in detail in the previous work [65, 66, 87]. By increasing 

in stirring speed above 200 rpm due to the broken  

of the bubbles and formation of coalescence phenomenon 

and accumulation bubbles in the center of the column, 

increasing in stirring speed had a reverse effect. When  

the stirrer speed was zero, removal efficiency for ZnO, 

TiO2, and ZrO2 nanofluids was 58.5%, 61.7%, and 55.5%, 

respectively. The highest removal efficiency  

in ZnO, TiO2, and ZrO2 nanofluids was about 71.2%, 

70.5%, and 68.9%, respectively, at 200 rpm. 

 

Amine concentration effect on CO2 absorption 

Fig. 8 presents the variations of CO2 removal 

efficiency in different Pz and DEA nanofluids. All trends 

showed at 15 min of the beginning time, the removal 

efficiency is high, and the slope changes are great. 

Nevertheless, after that time, the decline is small. There are 

two reasons for this tendency: the first, at the beginning  

of the process, CO2 concentration is high and causes  

the contact time at the unit volume of gas-liquid to get 

lesser in the column. Second, increasing the volume 

fraction of CO2 causes an increase in the reaction rate  

of CO2 absorption at the specified amount. These two 

agents make CO2 removal efficiency slowly reduced over 

time. Also, as shown in Fig. 8, the CO2 removal efficiency 

performance at a high concentration of amine is better than 

that low concentration for both Pz and DEA solutions.  

In other words, increasing the concentration of amine  

in both Pz and DEA solutions has a positive effect. 

 

Effect of liquid flow rate on CO2 absorption 

In this section, the volume flow rate effect of the 

absorbent on the CO2 removal efficiency was examined.  

In Figure 9, the CO2 removal efficiency profiles are drawn 

versus different solution flow rates. By increasing the liquid 

flow rate, CO2 removal efficiency increases. With  

the increase of liquid flow rate, the liquid mass transfer 

resistance and contact time are decreased, and this gives  

a higher speed of CO2 diffusing into the liquid. 
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Fig. 8: Variations of CO2 removal efficiency at the process and 

the effect of amine concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: The effect of solution flow rate on CO2 removal efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Variations of CO2 removal efficiency with the gas flow rate. 

 

Effect of gas flow rate on CO2 absorption 

Fig. 10 displays the profiles of the gas flow rate effect 

on CO2 removal efficiency at the different solutions of 

flow rates. Figure 10 demonstrated that the gas flow rate 

has a considerable influence on CO2 removal efficiency.  

It was evident that CO2 removal efficiency had decreased 

with increasing the gas flow rate. By increasing the gas 

flow rate, the CO2 that remained in the solution increased. 

So, the reaction between the limited quantity of free 

amines and an excess amount of CO2 molecules resulted 

in the CO2 removal efficiency decreasing. Another reason  

to decrease removal efficiency is to reduce the contact time 

at high gas flow rates. 

 

Effect of Temperature on CO2 absorption 

Effects of Pz concentration, CO2 partial pressure, and 

temperature on absorption efficiency are presented in  

Fig. 11. As seen in the figure, in a constant Pz concentration, 

CO2 partial pressure, and stirrer speed, the removal 

efficiency reduces with increasing temperature. It is 

known that when temperature increases, equilibrium 

absorption capacity decreases according to the exothermic 

nature of reactive absorption, and the reaction rate 

increases according to the Arrhenius equation. Hence, 

a decrease in absorption efficiency for aqueous Pz solution 

with temperature seemed to be more affected by a reduction 

in absorption capacity than an increase in reaction rate.  

Fig. 11 shows two apparent issues, too. First, when 

temperature and amine concentration are fixed, an increase 

in the partial pressure of CO2 causes a decrease in removal 

efficiency. Secondly, in a constant temperature, and CO2 

partial pressure the removal efficiency is increased  

with increasing the Pz concentration.    

 

CARBON DIOXIDE CAPTURE BY ADSORPTION 

Carbon dioxide adsorption using amine-modified 

adsorbents involves a chemical reaction between amino 

groups and CO2 [132, 133]. The Pz is an alkanol amine;  

its reaction with CO2 can be explained according to the 

zwitterions mechanism [134]. This mechanism includes 

the reaction of CO2 with Pz to form an ionic middle 

compound of zwitterion (PzH+COO−) [135]. Then a proton 

is separated from it by an alkali such as Pz, PzH+, or 

PzCOO− in the reaction environment, and Pz carbamate 

(PzCOO−) and protonate Pz (PzH+) are produced. This 

mechanism is shown in Figure 12. 

The adsorption percentage of adsorbent was calculated 

using Eq. (2) [26]: 
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Fig. 11: Effects of Pz concentration, CO2 partial pressure, and 

temperature on absorption efficiency. 

 

 

Fig. 12: Piperazine reaction with CO2 [91]. 

 

The adsorption capacity of the adsorbent was calculated 

with Eq. (3) [26]: 

  2
i e CO

e

(P P )VM
1000

R
q g

Tm
mg


    (3) 

 

Effect of adsorbent amount 

Saeidi et al. [26], Fashi et al. [91], and Karbalaei et al. [29] 

studied results on NaOH [136, 137], and AC sorbent for 

CO2 capture from the air on the batch reactor is indicated 

in Figs. 13 (A) and 13 (B). As shown, adsorbent dosage 

increases, keeping all the other parameters at constant CO2 

adsorption capacity decreases, which are shown in Fig. 13. 

At lower adsorbent dosage, the numbers of active sites are 

higher. With the increase in adsorbent dosage, aggregation 

of particles takes place; consequently, the available 

adsorption sites may decrease; as a result, CO2 adsorption 

capacity decreases. This means that the adsorbent dosage  

has a negative effect on CO2 adsorption capacity. 

 

Temperature effect on CO2 adsorption 

The effect of different temperatures on the CO2 

adsorption capacity for Activated Alumina (AA) and 

AA/NaOH [138], AC/NaOH [29], NaOH [26], and  AA/Pz 

[91] adsorbents are shown in Fig. 14. As can be seen from 

the trend to AA, AA/NaOH, AA/Pz, and AC, the increase  

in temperature from 293 to 353 K, reducing the CO2 adsorption 

capacity for the adsorbents, and the maximum value of CO2 

adsorption capacity was observed at 293 K. Also the result 

indicates that the CO2 adsorption process is highly exothermic, 

and CO2 adsorption capacity decreases by increasing  

the temperature. However, a trend in the NaOH indicates 

that the optimum temperature for CO2 removal is 308 K.  

To describe the perceived trend in this Figure, it can be noted 

that below 308 K, an increase in temperature leads to  

an increase in the carbonation reactions (i.e., forward 

reactions in Equations (4) and (5) [139]). Nevertheless, 

above 308 K, the reverse NaHCO3 decomposition reaction 

becomes thermodynamically favorable and slows down the 

overall carbonation reaction. Consequently, the optimum 

temperature for the present CO2 removal system is 308 K. 

also; Fig. 14 indicates that NaOH has better CO2 adsorption 

capacity than other adsorbents [140, 141]. There are two 

main steps for this reason. First, NaOH loading leads  

to an increase in CO2 removal rate due to direct growth  

in the reactant amount in the reaction system along with  

an increase in the gas-solid contact surface. The second is 

the pH effect. In the beginning, CO2 gas instantly reacts with 

hydroxide ions (OH−) and is converted to carbonate (CO3
-2). 

With increasing the solution conversion, the concentrations 

of [Amine]H+ and HCO−3 rise, this can be described via  

a base catalyst mechanism. At the lower conversion,  

the carbamate is formed rapidly and then decreases slowly 

at the higher conversion. When the pH value becomes low 

sufficient, the Amine conversion to HCO−3 becomes higher 

and postpones the formation of [Amine]COO-. Therefore due 

to the conversion of Amine to Amine carbamate and protonated 

Amine, the concentration of free Amine becomes low but 

the value of Amine is still important for the absorption of CO2. 

(g) 2(g) 2 3(s) 2 (g)
2NaOH CO Na CO H O     (4) 

298K
H 127.5kJ   

(g) 2(g) 3(s)
NaOH CO NaHCO      (5) 

298K
H 131.5 kJ   

 

Pressure effect on CO2 adsorption 

The effects of different adsorption pressures including 

2, 4, 6, and 8 bar, on CO2 adsorption by activated alumina 

(AA)  and AA/NaOH [138], AC/NaOH [29], NaOH [26], 

and  AA/Pz   [91]   adsorbents,   are   presented   in   Fig.  15. 

The  adsorption  capacity  at  2  bar  is  low,  and  it gradually 
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Fig. 13: Effect of the adsorbent on CO2 adsorption capacity. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Effect of temperature on CO2 adsorption capacity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15: Effect of pressure on CO2 adsorption capacity. 

 

increases with increasing pressure from 2 to 8 bar. Some 

graph such as AC/NaOH shows that maximum adsorption 

capacity was carried out at 6 bar and after this pressure 

increasing pressure, there is no impressive effect on CO2 

adsorption capacity. Nevertheless, the maximum CO2 adsorption 

capacity for all adsorbents is near the pressure of 8 bar. 

 

CONCLUSIONS 

This research consists of two absorption and adsorption 

parts. In the absorption section, it was found that data for the 

CO2-Pz-H2O and CO2-DEA-H2O system, the CO2 removal 

efficiency increased with an increase in the liquid flow rate 

and amine concentration and decreased with an increase  

in the CO2 flow rate. The CO2 removal efficiency increases 

with the solid loading of TiO2 and ZrO2 nanoparticle up to  

a maximum value and then decreases. But, the removal 

efficiency of ZnO nanoparticles increased with the increase 

in the solid loading. It was observed that the effect of stirrer 

speeds up to 200 rpm is positive on the CO2 removal 

efficiency. In the adsorption section, CO2 capture by some 

absorbents such as AA, AA/NaOH, AA/NaOH, AA/Pz, and 

NaOH was evaluated. The effects of numerous operating 

parameters, such as absorbent loading, temperature, and 

pressure on the CO2 removal rate were considered. It was found 

that CO2 adsorption capacity is in direct and indirect 

proportion to the pressure and temperature, respectively, 

which enhances CO2 adsorption capacity by increasing 

pressure and decreasing the temperature. This study has also 

shown that NaOH has a better CO2 adsorption capacity 

than other adsorbents due to their high pH. The analysis 

data of NaOH is important and can be deliberate as a baseline 

for a comparison with the created NaOH in the future. 

 

Nomenclature 

AA         Activated alumina 

AC         Activated Carbone 

Abbr.                  Abbreviation 

AMP            Isobutanolamine 
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DEA             Diethanolamine 

DGA               Diglycolamine 

DIPA      Diisopropanolamine 

MDEA                Methyldiethanolamine 

MEA        Monoethanolamine 

m                    Mass of adsorbent, g 

2COM       Molar mass of carbon dioxide, g/mol 

Pi         Initial pressure, bar 

Pe             Equilibrium pressure, bar 

Pz          Piperazine 

qe                 Equilibrium adsorption capacity, mg/g 

R     Universal gas constant, 8.314 J mol/K 

T    Temperature of the reactor, K 

TEA              Triethanolamne 

V      Volume of the reactor occupied by the CO2 gas, mL 

2
CO in

y


          Mole fraction of inlet CO2 

2
CO out

y


        Mole fraction of outlet CO2 
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