Effect of Laminar Pulsatile Fluid Flow on Separation of Volatile Organic Compounds from Aqueous Solution by a Hollow Fiber Membrane-Based Process

Document Type : Research Article


1 Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, I.R. IRAN

2 Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, SWEDEN

3 Central Laboratory of the University of Sistan and Baluchestan, Zahedan, I.R. IRAN

4 Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, POLAND

5 Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan 98135, I.R. IRAN


In this study, a laminar pulsatile fluid flow was used for the separation of benzene, toluene, ethylbenzene, and xylene isomers (BTEX) from aqueous solutions. Polyether sulfone hollow fiber membrane has been applied to this process. The effects of BTEX concentration, and feed and extraction flow rates were examined. It was found that the application of the pulsatile fluid flow with the frequency of 0.5 Hz improved the separation process significantly, and the removal efficiency increased more than twice. Moreover, the results showed that BTEX separation under pulsatile fluid flow was affected by the feed flow rate, extraction flow rate, and the BTEX concentration, as well.


Main Subjects

[1] Stasik S., Wick L.Y., Wendt-Potthoff K., Anaerobic BTEX Degradation in Oil Sands Tailings Ponds: Impact of Labile Organic Carbon and Sulfate-Reducing Bacteria, Chemosphere, 138: 133–139 (2015).
        doi: 10.1016/j.chemosphere.2015.05.068.
[2] Yang Z., Liu J., Yao X., Rui Z., Ji H., Efficient Removal of BTEX from Aqueous Solution by β-Cyclodextrin Modified Poly(butyl methacrylate) Resin, Sep. Purif. Technol., 158: 417–421 (2016).
        doi: 10.1016/j.seppur.2015.12.027.
        doi: 10.1007/s11783-011-0340-4.
[4] Li L., Li H., Zhang X., Wang L., Xu L., Wang X., Yu Y., Zhang Y., Cao G., Pollution Characteristics and Health Risk Assessment of Benzene Homologues in Ambient Air in the Northeastern Urban Area of Beijing, China, J. Environ. Sci. (China), 26(1): 214–223 (2014).
       doi: 10.1016/S1001-0742(13)60400-3.
[5] Zhao Z., Wang S., Yang Y., Li X., Li J., Li Z., Competitive Adsorption and Selectivity of Benzene and Water Vapor on the Microporous Metal Organic Frameworks (HKUST-1), Chem. Eng. J., 259: 79–89 (2015).
        doi: 10.1016/j.cej.2014.08.012.
[6] Aivalioti M., Papoulias P., Kousaiti A., Gidarakos E., Adsorption of BTEX, MTBE and TAME on Natural and Modified Diatomite, J. Hazard. Mater., 207–208: 117–127 (2012)
       doi: 10.1016/j.jhazmat.2011.03.040.
[7] Aly Hassan A., Sorial G.A., Removal of Benzene under Acidic Conditions in a Controlled Trickle Bed Air Biofilter, J. Hazard. Mater., 184(1–3): 345–349 (2010).
        doi: 10.1016/j.jhazmat.2010.08.042.
[8] Zhang Y., Mu Y., Liu J., Mellouki A., Levels, Sources and Health Risks of Carbonyls and BTEX in the Ambient Air of Beijing, China, J. Environ. Sci., 24(1): 124–130 (2012).
        doi: 10.1016/S1001-0742(11)60735-3.
[9] Rahul, Mathur A.K., Balomajumder C., Performance Evaluation and Model Analysis of BTEX Contaminated Air in Corn-Cob Biofilter System, Bioresour. Technol., 133: 166–174 (2013).
       doi: 10.1016/j.biortech.2013.01.087.
[10] Peng J., Song Y., Yuan P., Xiao S., Han L., An Novel Identification Method of the Environmental Risk Sources for Surface Water Pollution Accidents in Chemical Industrial Parks, J. Environ. Sci. (China), 25(7): 1441–1449 (2013).
       doi: 10.1016/S1001-0742(12)60187-9.
[11] Murić A., Petrinić I., Christensen M.L., Comparison of Ceramic and Polymeric Ultrafiltration Membranes for Treating Wastewater from Metalworking Industry, Chem. Eng. J., 255: 403–410 (2014).
        doi: 10.1016/j.cej.2014.06.009.
       doi: 10.1016/j.seppur.2015.11.015.
[13] Wang K., Lin X., Liu J.Z., Juang G., Slow Hydrophobic Hydration Induced Polymer Ultrafiltration Membranes with High Water Flux, J. Memb. Sci., 471: 27–34 (2014).
        doi: 10.1016/j.memsci.2014.07.073.
[14] Ulbricht M., Advanced Functional Polymer Membranes, Polymer, 47(7): 2217–2262 (2006).
        doi: 10.1016/j.polymer.2006.01.084.
[15] Dong Y., Guo H., Su Z., Wei W., Wu X., Pervaporation Separation of Benzene/Cyclohexane Through AAOM-Ionic Liquids/Polyurethane Membranes, Chem. Eng. Process. Process Intensif., 89: 62–69 (2015).
        doi: 10.1016/j.cep.2015.01.006.
[16] Ng L.Y., Mohammad A.W., Leo C.P., Hilal N., Polymeric Membranes Incorporated with Metal/Metal Oxide Nanoparticles: A Comprehensive Review, Desalination, 308: 15–33 (2013).
       doi: 10.1016/j.desal.2010.11.033.
[17] Padaki M., Surya Murali R., Abdullah M.S.,  Misdan N., Moslehyani A., Kassim M.A., Hilal N., Ismail A.F., Membrane Technology Enhancement in Oil-Water Separation. A Review, Desalination, 357: 197–207 (2015).
        doi: 10.1016/j.desal.2014.11.023.
[18] Tai M.H., Juay J., Sun D.D., Leckie J.O., Carbon-Silica Composite Nanofiber Membrane for High Flux Separation of Water-in-Oil Emulsion - Performance Study and Fouling Mechanism, Sep. Purif. Technol., 156: 952–960 (2015).
       doi: 10.1016/j.seppur.2015.08.008.
[19] Huang X., Wang W., Liu Y., Wang H., Treatment of Oily Waste Water by PVP Grafted PVDF Ultrafiltration Membranes, Chem. Eng. J., 273: 421–429 (2015).
        doi: 10.1016/j.cej.2015.03.086.
        doi: 10.1016/j.desal.2015.07.017.
[21] Fujioka T., Khan S.J., McDonald J.A., Nghiem L.D., Nanofiltration of Trace Organic Chemicals: A Comparison Between Ceramic and Polymeric Membranes, Sep. Purif. Technol., 136: 258–264 (2014).
        doi: 10.1016/j.seppur.2014.08.039.
[22] Abdessemed D., Nezzal G., Ben Aim R., Fractionation of a Secondary Effluent with Membrane SeparationDesalination, 146(1–3):
433–437 (2002).
        doi: 10.1016/S0011-9164(02)00529-5.
[23] Ebrahimi M., Ashaghi K.Sh., Engel L., Willershausen D., Mund P., Bolduan P., Czermak P., Characterization and Application of Different Ceramic Membranes for the Oil-Field Produced Water Treatment, Desalination, 245(1–3): 533–540 (2009).
       doi: 10.1016/j.desal.2009.02.017.
        doi: 10.1016/j.
[25] Hwang K.J., Chan C.S., Tung K.L., Effect of Backwash on the Performance of Submerged Membrane Filtration, J. Memb. Sci., 330(1–2): 349–356 (2009).
        doi: 10.1016/j.memsci.2009.01.012.
        doi: 10.1016/j.memsci.2013.10.031.
[27] Moslehyani A., Ismail A.F., Othman M.H.D., Matsuura T., Design and Performance Study of Hybrid Photocatalytic Reactor-PVDF/MWCNT Nanocomposite Membrane System for Treatment of Petroleum Refinery Wastewater, Desalination, 363: 99–111 (2015).
        doi: 10.1016/j.desal.2015.01.044.
[28] Khademi R., Mohebbi-Kalhori D., Hadjizadeh A., Computational Study of Culture Conditions and Nutrient Supply in a Hollow Membrane Sheet Bioreactor for Large-Scale Bone Tissue Engineering, J. Artif. Organs, 17(1): 69–80 (2014):
       doi: 10.1007/s10047-013-0732-2.
[29] Karhu M., Kuokkanen T., Rämö J., Mikola M., Tanskanen J., Performance of a Commercial Industrial-Scale UF-Based Process for Treatment of Oily Wastewaters, J. Environ. Manage., 128: 413-420 (2013):
        doi: 10.1016/j.jenvman.2013.05.053.
[30] Rodrigues C., Rodrigues M., Semiao V., Geraldes V., Enhancement of Mass Transfer in Spacer-Filled Channels under Laminar Regime by Pulsatile Flow, Chem. Eng. Sci., 123: 536–541 (2015).
        doi: 10.1016/j.ces.2014.11.047.
[31] Shon H.K., Phuntsho S., Chaudhary D.S., Vigneswaran S., Cho J., Nanofiltration for Water and Wastewater Treatment - A Mini Review, Drink. Water Eng. Sci., 6(1): 47–53 (2013).
        doi: 10.5194/dwes-6-47-2013.
[32] Shen P., McCarthy D.T., Chandrasena G.I., Li Y., Deletic A., Validation and Uncertainty Analysis of a Stormwater Biofilter Treatment Model for Faecal Microorganisms, Sci. Total Environ., 709: 136157 (2020).
       doi: 10.1016/j.scitotenv.2019.136157.
[33] Jalilvand Z., Zokaee Ashtiani F., Fouladitajar A.,
Rezaei H., Computational Fluid Dynamics Modeling and Experimental Study of Continuous and Pulsatile Flow in Flat Sheet Microfiltration Membranes,
J. Memb. Sci., 450:207–214 (2014).
       doi: 10.1016/j.memsci.2013.09.008.
[34] Zhang B., Kotsalis G., Khan J., Xiong Z., Lgou T., Lan G., Chen Y., Backwash Sequence Optimization of a Pilot-Scale Ultrafiltration Membrane System Using Data-Driven Modeling for Parameter Forecasting, J. Memb. 612: 118464 (2020).
       doi: 10.1016/j.memsci.2020.118464.
       doi: 10.1016/j.memsci.2008.03.024.
       doi: 10.1016/j.memsci.2013.10.031.
[37] Chang D.C., Cell Portion and Cell Fusion Using
an Oscillating Electric Field
, Biophys. J., 56(4): 641–652 (1989).
       doi: 10.1016/S0006-3495(89)82711-0.
[38] Curcio S., Calabrò V., Iorio G., Monitoring and Control of TMP and Feed Flow and Rate Pulsatile Operations During Ultrafiltration in a Membrane Module, Desalination, 145(1–3): 217–222 (2002).
       doi: 10.1016/S0011-9164(02)00415-0.