Spectral and Electrochemical Sensing Studies of Novel Tetradentate Schiff Bases, Having Enhanced Antifungal Activity, Containing Ferrocene and Aromatic Moieties Attached Imines

Document Type : Research Article

Authors

PG & Research Department of Chemistry, Government Arts College for Men (Autonomous), Nandanam, Chennai-600 035, Tamil Nadu, INDIA

Abstract

Multi metal ion sensing unsymmetrical Schiff bases containing ferrocene group attached imine at one side and aromatic moiety connected azomethine on the other side have been synthesized. Titration studies coupled with a UV-Visible spectrophotometer expose the binding aptitude of new receptors. Development of MLCT band near 457 nm for the coordination of Cu2+ ions with new ligands is also noticed. Electrochemical studies of receptor solutions with added metal ions expose quasi-reversible processes by giving superfluous ΔEP values (146-161 mV, then the expected 59 mV). The concentration of metal ions required for effective sensing is calculated from the percentage amount of ΔIpa extracted from the Ipa data. Results obtained in computational molecular docking studies and in-vitro analysis invite more focused research by the pharmacist to develop new formulations for antifungal medicines.

Keywords

Main Subjects


[1] Sanjoy Singh T., Paul P.C., Harun Pramanik A.R., Fluorescent Chemosensor Based on Sensitive Schiff Base for Selective Detection of Zn2+, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121: 520–526(2014).

[2] Gale P.A., Caltagirone C., Anion Sensing by Small Molecules and Molecular Ensembles, Chemical Society Reviews, 44: 4212–4227(2015).

[3] Bagher-Gholivand M., Babakhanian A., Mohammadi M., Moradi P., Kiaie S.H., Novel Opticalbulk Membrane Sensor and its Application for Determination of Iron in Plant and Cereal Samples, Journal of Food Composition and Analysis, 29(2): 144–150 (2013). 

[4] Rostami-Javanroudi S., Babakhanian A., New Electrochemical Sensor for Direct Quantification of Vitamin K in Human Blood Serum, Microchemical Journal, 163: 105716(2021).

[5] Babakhanian A., Momeneh T., Aberoomand-azar P.,  Kaki S.,  Torki M.,  Hossein Kiaie S., Dabirian F., A Fabricated Electro-Spun Sensor Based on Lake Red C pigments Doped into PAN (polyacrylonitrile) Nano-Fibers for Electrochemical Detection of Aflatoxin B1 in Poultry Feed and Serum Samples, The Analyst, 140(22): 7761–7767 (2015).  

[6] Bansod B., Kumar T., Thakur R., Rana S., Singh I., A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing Platforms, Biosensor and Bioelectronics, 94: 443-455 (2017).

[7] Gong T., Liu J., Liu X., Liu J., Xiang J., Wu Y., A Sensitive and Selective Sensing Platform Based on CdTe QDs in the Presence of L-Cysteine for Detection of Silver, Mercury and Copper Ions in Water and Various Drinks, Food Chemistry, 231: 306-3129 (2016).

[8] Abu-Dief AM., Mohamed IM., A Review on Versatile Applications of Transition Metal Complexes Incorporating Schiff Bases, Journal of Basic and  Applied  Sciences, 4: 119–133 (2015).

[9] Babakhanian A., Gholivand M.B., Mohammadi M., Khodadadian M.,  Shockravi A., Abbaszadeh M., Ghanbary A., Fabrication of a Novel Iron(III)–PVC Membrane Sensor Based on a New 1,1′-(iminobis(methan-1-yl-1-ylidene))dinaphthalen-2-ol Synthetic Ionophore for Direct and Indirect Determination of Free Iron Species in Some Biological and Non-Biological Samples, Journal of Hazardous Materials, 177(1-3): 159–166(2010).

[10] Babakhanian A., Momeneh T., Aberoomand-azar P.,  Kaki S., Torki M.,  Hossein Kiaie S.,  Dabirian F., A Fabricated Electro-Spun Sensor Based on Lake Red C Pigments Doped into PAN (polyacrylonitrile) Nano-Fibers for Electrochemical Detection of Aflatoxin B1 in Poultry Feed and Serum Samples, The Analyst, 140(22): 7761–7767(2015).  

[11] Su Q., Niu Q., Sun T., Li T., A Simple Fluorescence Turn-on Chemosensor Based on Schiff-Base for Hg2+-Selective Detection, Tetrahedron Letters, 57: 4297–4301(2016). 

[12] Forsberg Z., Stepnov A.A., Kruge Nærdal G., Klinkenberg G., Chapter One–Engineeringlytic Polysaccharide Monooxygenases (LPMOs), Methods in Enzymology, 644:1-34 (2020).

[13] Bao J., Xing Y., Feng C., Kou S., Jiang H., Li X., Acute and Sub‑Chronic Effects of Copper on Survival, Respiratory Metabolism, and Metal Accumulation in Cambaroides Dauricus, Scientific Reports, 1-9 (2020)

[14] Barber R.G., Grenier Z.A., Burkhead J.L., Copper Toxicity Is Not Just Oxidative Damage: Zinc Systems and Insight from Wilson Disease, Biomedicines, 9: 316 (2021).

[15] Chen H., Giri N.C., Zhang R., Yamane K., Zhang Y. Maroney M., Costa M., Nickel Ions Inhibit Histone Demethylase JMJD1A and DNA Repair Enzyme ABH2 by Replacing the Ferrous Iron in the Catalytic Centers, Journal of Biological Chemistry, 292: 10743-10743 (2017).

[16] Tarnacka B.,  Jopowicz A., Maślińska M., Copper, Iron, and Manganese Toxicity in Neuropsychiatric Conditions, International Journal of Molecular Sciences, 22(15): 7820 (2021).

[17] Branca J.J.V., Pacini A., Gulisano M., Taddei N., Fiorillo C., Becatti M., Cadmium-Induced Cytotoxicity: Effects on Mitochondrial Electron Transport Chain, Frontiers in Cell and Developmental Biology, 8: 1-7(2020).

[18] Kumar A., Kumar A., Cabral-Pinto M.M.S., Chaturvedi A.K., Shabnam A.A., Subrahmanyam G., Mondal R., Kumar Gupta D., Malyan S.K.., Kumar S.S., Khan S.A., Yadav K.K., Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches, International Journal of Environmental Research Public Health, 17: 2179 (2020). 

[19] Mahmoud W.H., Deghadi R.G., Mohamed G.G., Novel Schiff Base Ligand and its Metal Complexes with Some Transition Elements. Synthesis,  Spectroscopic, Thermal Analysis, Antimicrobial and in Vitro Anticancer Activity, Applied Organometallic Chemistry, 30: 221- 230 (2016).

[20] Nasir Uddin M., Samina Ahmed A., Rahatul Alam S.M., Biomedical Applications of Schiff Base Metal Complexes, Journal of Coordination Chemistry, 73(23): 3109-3149(2020).

[21] Suzan A., Matar Wamidh H., Talib Mohammad S., Mustafa Mohammad S., Mubarak Murad Al Damen A.., Synthesis, Characterization, and Antimicrobial Activity of Schiff Bases Derived from Benzaldehydes and 3,30-diaminodipropylamine, Arabian Journal of Chemistry, 8: 850-857(2015).

[22] Buda De Cesare G., Cristy S.A., Garsin D.A., Lorenz M.C., Antimicrobial Peptides: A New Frontier in Antifungal Therapy, mBio., 11: e02123-20(2020).

[23] Farouk Kandil., Mohamad Khaled Chebani., Wail Al Zoubi., Synthesis of Macrocyclic Bis-Hydrazone and Their Use in Metal Cations Extraction, ISRN Organic Chemistry, 8: 208284 (2012). 

[24] Bagamboula C.F, Uyttendaele., Debevere J., Inhibitory Effect of Thyme and Basil Essential Oils, Carvacrol, Thymol, Estragol, Linalool and P-Cymene Towards Shigella Sonnei and S. Flexneri, Food Microbiology, 21: 33 (2004).

[25] Morris G.M., Huey R., Lindstrom W., Sanner M. F., Belew R.K., Goodsell D.S., Olson A.J., AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility, Journal of Computational Chemistry, 30: 2785 (2009).

[26] Erkhova L.V., Presniakov I.A., Afanasov M.I., Lemenovskiy D.A., Yu H., Wang L., Danilson M., Koel M., Ferrocene Introduced into 5-Methylresorcinol-Based Organic Aerogels, Polymers, 12: 1582 (2020).

[27] Mandewale M.C., Thorat B., Nivid Y., Nagarsekara R.A.J., Yamgar R., Synthesis, Structural Studies and Antituberculosis Evaluation of New Hydrazone Derivatives of Quinolone and their Zn(II) Complexes, Journal  Saudi Chemical  Society, 22: 218 (2016). 

[28] Benramdane R., Benghanem F., Ourari A., Keraghel S., Bouet G., Synthesis and Characterization of a New Schiff Base Derived from 2,3-diaminopyridine and 5 methoxysalicylaldehyde and its Ni(II), Cu(II)and  Zn(II) Complexes. Electrochemical and Electrocatalytical Studies,  Journal of Coordinational Chemistry, 68: 560 (2015). 

[29] Cheng J., Ma X., Zhang Y., Liu J., Zhou X., Xiang H., Optical Chemosensors Based on Transmetalation of Salen-Based Schiff Base Complexes, Inorganic Chemistry, 53: 3210−3219 (2014).

[30] Lüthi E., Forero Cortés P.A., Prescimone A., Constable E.C., Housecroft C.E., Schiff Base Ancillary Ligands in Bis(diimine) Copper(I) Dye-Sensitized Solar Cells, International Journal of Molecular Sciences, 21(5): 1735 (2020).

[31] Kamatchi P., Selvaraj S., Kandaswamy M., Synthesis, Magnetic and Electrochemical Studies of Binuclear Copper(II) Complexes Derived from Unsymmetrical Polydentate Ligands, Polyhendron, 24: 900(2005).

[32] Mondal A., Chowdhury A.R., Bhuyan S., Mukhopadhyaye S.K., Banerjee P., A Simple Urea-Based Multianalyte and Multichannel Chemosensor for the Selective Detection of F−, Hg2+ and Cu2+ in Solution and Cells and the Extraction of Hg2+ and Cu2+ from Real Water Sources: A Logic Gate Mimic Ensemble, Dalton Transactions, (2019).

[33] Kamal A., Kumar S., Kumar V., Mahajan R.K., Selective Sensing Ability of Ferrocene Appended Quinoline-Triazolederivative Toward Fe (III) Ions, Sensors and Actuators B: Chemical, 22: 370 (2015).  

[34] Khashi M., Beyramabadi S.A, Gharib A., Novel Schiff Bases of Pyrrole: Synthesis, Experimental and Theoretical Characterizations, Fluorescent Properties and Molecular Docking, Iran. J. Chem. Chem. Eng. (IJCCE), 37(6): 59-72 (2018).

[1] Sanjoy Singh T., Paul P.C., Harun Pramanik A.R., Fluorescent Chemosensor Based on Sensitive Schiff Base for Selective Detection of Zn2+, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121: 520–526 (2014).
[2] Gale P.A., Caltagirone C., Anion Sensing by Small Molecules and Molecular Ensembles, Chemical Society Reviews, 44: 4212–4227 (2015).
[3] Bagher-Gholivand M., Babakhanian A., Mohammadi M., Moradi P., Kiaie S.H., Novel Opticalbulk Membrane Sensor and its Application for Determination of Iron in Plant and Cereal Samples, Journal of Food Composition and Analysis, 29(2): 144–150 (2013). 
[4] Rostami-Javanroudi S., Babakhanian A., New Electrochemical Sensor for Direct Quantification of Vitamin K in Human Blood Serum, Microchemical Journal, 163: 105716 (2021).
[5] Babakhanian A., Momeneh T., Aberoomand-azar P.,  Kaki S.,  Torki M.,  Hossein Kiaie S., Dabirian F., A Fabricated Electro-Spun Sensor Based on Lake Red C pigments Doped into PAN (polyacrylonitrile) Nano-Fibers for Electrochemical Detection of Aflatoxin B1 in Poultry Feed and Serum Samples, The Analyst, 140(22): 7761–7767 (2015).  
[6] Bansod B., Kumar T., Thakur R., Rana S., Singh I., A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing Platforms, Biosensor and Bioelectronics, 94: 443-455 (2017).
[7] Gong T., Liu J., Liu X., Liu J., Xiang J., Wu Y., A Sensitive and Selective Sensing Platform Based on CdTe QDs in the Presence of L-Cysteine for Detection of Silver, Mercury and Copper Ions in Water and Various Drinks, Food Chemistry, 231: 306-3129 (2016).
[8] Abu-Dief AM., Mohamed IM., A Review on Versatile Applications of Transition Metal Complexes Incorporating Schiff Bases, Journal of Basic and  Applied  Sciences, 4: 119–133 (2015).
[9] Babakhanian A., Gholivand M.B., Mohammadi M., Khodadadian M.,  Shockravi A., Abbaszadeh M., Ghanbary A., Fabrication of a Novel Iron(III)–PVC Membrane Sensor Based on a New 1,1′-(iminobis(methan-1-yl-1-ylidene))dinaphthalen-2-ol Synthetic Ionophore for Direct and Indirect Determination of Free Iron Species in Some Biological and Non-Biological Samples, Journal of Hazardous Materials, 177(1-3): 159–166 (2010).
[10] Babakhanian A., Momeneh T., Aberoomand-azar P.,  Kaki S., Torki M.,  Hossein Kiaie S.,  Dabirian F., A Fabricated Electro-Spun Sensor Based on Lake Red C Pigments Doped into PAN (polyacrylonitrile) Nano-Fibers for Electrochemical Detection of Aflatoxin B1 in Poultry Feed and Serum Samples, The Analyst, 140(22): 7761–7767 (2015).  
[11] Su Q., Niu Q., Sun T., Li T., A Simple Fluorescence Turn-on Chemosensor Based on Schiff-Base for Hg2+-Selective Detection, Tetrahedron Letters, 57: 4297–4301(2016). 
[13] Bao J., Xing Y., Feng C., Kou S., Jiang H., Li X., Acute and sub‑Chronic Effects of Copper on Survival, Respiratory Metabolism, and Metal Accumulation in Cambaroides Dauricus, Scientific Reports, 1-9 (2020)
[14] Barber R.G., Grenier Z.A., Burkhead J.L., Copper Toxicity Is Not Just Oxidative Damage: Zinc Systems and Insight from Wilson Disease, Biomedicines, 9: 316 (2021).
[15] Chen H., Giri N.C., Zhang R., Yamane K., Zhang Y. Maroney M., Costa M., Nickel Ions Inhibit Histone Demethylase JMJD1A and DNA Repair Enzyme ABH2 by Replacing the Ferrous Iron in the Catalytic Centers, Journal of Biological Chemistry, 292: 10743-10743 (2017).
[16] Tarnacka B.,  Jopowicz A., Maślińska M., Copper, Iron, and Manganese Toxicity in Neuropsychiatric Conditions, International Journal of Molecular Sciences, 22(15): 7820 (2021).
[17] Branca J.J.V., Pacini A., Gulisano M., Taddei N., Fiorillo C., Becatti M., Cadmium-Induced Cytotoxicity: Effects on Mitochondrial Electron Transport Chain, Frontiers in Cell and Developmental Biology, 8: 1-7 (2020).
[18] Kumar A., Kumar A., Cabral-Pinto M.M.S., Chaturvedi A.K., Shabnam A.A., Subrahmanyam G., Mondal R., Kumar Gupta D., Malyan S.K.., Kumar S.S., Khan S. A., Yadav K.K., Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches, International Journal of Environmental Research Public Health, 17: 2179 (2020). 
[20] Nasir Uddin M.,  Samina Ahmed A.,  Rahatul Alam S.M., Biomedical Applications of Schiff Base Metal Complexes, Journal of Coordination Chemistry, 73(23): 3109-3149 (2020).
[21] Suzan A., Matar Wamidh H., Talib Mohammad S., Mustafa Mohammad S., Mubarak Murad AlDamen A.., Synthesis, Characterization, and Antimicrobialactivity of Schiff Bases Derived from Benzaldehydesand 3,30-diaminodipropylamine, Arabian Journal of Chemistry, 8: 850-857 (2015).
[22] Buda De Cesare G., Cristy S.A., Garsin D.A., Lorenz M.C., Antimicrobial Peptides: A New Frontier in Antifungal Therapy, mBio., 11: e02123-20(2020).
[23] Farouk Kandil., Mohamad Khaled Chebani., Wail Al Zoubi., Synthesis of Macrocyclic Bis-Hydrazone and Their Use in Metal Cations Extraction, ISRN Organic Chemistry, 8: 208284 (2012). 
[25] Morris G.M., Huey R., Lindstrom W., Sanner M. F., Belew R.K., Goodsell D.S., Olson A.J., AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility, Journal of Computational Chemistry, 30: 2785 (2009).
[26] Erkhova L.V., Presniakov I.A., Afanasov M.I., Lemenovskiy D.A., Yu H., Wang L., Danilson M., Koel M., Ferrocene Introduced into 5-Methylresorcinol-Based Organic Aerogels, Polymers, 12: 1582 (2020).
[27] Mandewale M.C., Thorat B., Nivid Y., Nagarsekara R.A.J., Yamgar R., Synthesis, Structural Studies and Antituberculosis Evaluation of New Hydrazone Derivatives of Quinolone and their Zn(II) Complexes, Journal  Saudi Chemical  Society, 22: 218 (2016). 
[29] Cheng J., Ma X., Zhang Y., Liu J., Zhou X., Xiang H., Optical Chemosensors Based on Transmetalation of Salen-Based Schiff Base Complexes, Inorganic Chemistry, 53: 3210−3219 (2014).
[30] Lüthi E., Forero Cortés P.A., Prescimone A., Constable E.C., Housecroft C.E., Schiff Base Ancillary Ligands in Bis(diimine) Copper(I) Dye-Sensitized Solar Cells, International Journal of Molecular Sciences, 21(5): 1735 (2020).
[33] Kamal A., Kumar S., Kumar V., Mahajan R.K., Selective Sensing Ability of Ferrocene Appended Quinoline-Triazolederivative Toward Fe (III) Ions, Sensors and Actuators B: Chemical, 22: 370 (2015).  
[34] Khashi M., Beyramabadi S.A, Gharib A., Novel Schiff Bases of Pyrrole: Synthesis, Experimental and Theoretical Characterizations, Fluorescent Properties and Molecular Docking, Iran. J. Chem. Chem. Eng. (IJCCE), 37(6): 59-72 (2018).