Acoustofluidic Separation of Microparticles: A Numerical Study

Document Type : Research Article


Department of Mechanical Engineering, Shahrekord University, Shahrekord, I.R. IRAN


In this study, two-dimensional simulations are performed to separate polystyrene (PS) and polymethyl methacrylate (PMMA) particles suspended in water using an acoustic field. The acoustic waves are generated by two aluminum interdigitated transducers (IDTs) over a piezoelectric substrate. The effect of input power, inlet flow rate, acoustic frequency, and distance between IDTs and channels on separation efficiency is evaluated by considering channel thickness. It is observed that the separation efficiency is enhanced by increasing acoustic frequency and input power. Also, as the inlet flow rate and distance between IDTs and channel decrease, the separation efficiency increases. The optimum values for input power, flow rate, frequency, and distance are 1.4 W, 0.2 mL/min, 5 MHz, and 75 µm, respectively, and a maximum separation of 88% is achieved.


Main Subjects

[1] Sajeesh P., Sen A.K., Particle Separation and Sorting in Microfluidic Devices: A Review, Microfluid Nanofluid, 17: 1–52 (2014).
[2] Kashaninejad N., Nikmaneshi M.R., Moghadas H., Oskouei A.K., Rismanian M., Barisam M., Saidi M.S., Firoozabadi B., Organ-Tumor-on-a-Chip for Chemosensitivity Assay: A Critical Review, Micromachines, 7: 130 (2016).
[3] Fathi F., Rahbarghazi R., Rashidi M.R., Label-free Biosensors in the Field of Stem Cell Biology, Biosensors and Bioelectronic, 101: 188-198 (2017).
[4] Staufer O., Antona S., Zhang D., Csatari J., Schroter M., Janiesch J.W., Fabritz S., Berger I., Platzman I., Microfluidic Production and Characterization of Biofunctionalized Giant Unilamellar Vesicles for Targeted Intracellular Cargo Delivery, Biomaterials, 264: 120203 (2021).
[5] Torkaman R., Torab-Mostaedi M., Safdari J., Moosavian S.M.A., Asadollahzadeh M., Mass Transfer Coefficients in Pulsed Column for Separation of Samarium and Gadolinium, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36: 145–158 (2017).
[6] Li Q., Zhou S., Zhang T., Zheng B., Tang H., Bioinspired Sensor Chip for Detection of miRNA-21 Based on Photonic Crystals Assisted Cyclic Enzymatic Amplification Method, Biosensors and Bioelectronics, 150: 111866 (2020).
[7] Bayareh M., An Updated Review on Particle Separation in Passive Microfluidic Devices, Chemical Engineering and Processing-Process Intensification, 153: 107984 (2020).
[8] Xiong S., Chen X., Chen H., Chen Y., Zhang W., Numerical Study on an Electroosmotic Micromixer with Rhombic Structure, Journal of Dispersion Science and Technology, 1–7 (2020).
[9] Feng Q., Chen X., Wang X., Yu X., Zeng X., Ma Y., Wang Q., Numerical Simulation of a Three Dimensional Electroosmotic Micromixer with a Flexible and Controllable Rubik’s Cube Module, International Communications in Heat and Mass Transfer, 127: 105482 (2021).
[10] Bayareh, M., Ashani M.N., Usefian A., Active and Passive Micromixers: A Comprehensive Review. Chemical Engineering and Processing-Process Intensification, 147: 107771 (2020).
[11] Usefian A., Bayareh M., Shateri A., Taheri N., Numerical Study of Electro-Osmotic Micro-Mixing of Newtonian and Non-Newtonian Fluids, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(5): 1-10 (2019).
[12] Shiriny A., Bayareh M., Inertial Focusing of CTCs in a Novel Spiral Microchannel, Chemical Engineering Science, 229: 116102 (2021).
[13] Shiriny A., Bayareh M., On Magnetophoretic Separation of Blood Cells Using Halbach Array of Magnets, Meccanica, 55: 1905-1916 (2020).
[14] Shiriny A., Bayareh M., Ahmadi Nadooshan A., Combination of Inertial Focusing and Magnetophoretic Separation in a Novel Microdevice, Korean Journal of Chemical Engineering, 38: 1686-1702 (2021).
[15] Shi J., Huang H., Stratton Z., Huang Y., Huang T.J., Continuous Particle Separation in a Microfluidic Channel via Standing Surface Acoustic Waves (SSAW), Lab. on a Chip., 24: 3354–3359 (2009).
[16] Glynne-Jones P., Boltryk R.J., Harris N.R., Cranny A.W., Hill M., Mode-switching: A New Technique for Electronically Varying the Agglomeration Position in an Acoustic Particle Manipulator, Ultrasonics, 50: 68–75 (2010).
[17] Destgeer G., Im S., Ha B.H., Ansari M.A., Adjustable, Rapidly Switching Microfluidic Gradient Generation Using Focused Travelling Surface Acoustic Waves, Applied Physics Letters, 104: 023506 (2014).
[18] Oseev A., Lucklum R., Zubtsov M., Schmidt M.P., SAW based Phononic Crystal Liquid Sensor-Periodic Microfluidic Channels Approach,  IEEE International Ultrasonics Symposium (IUS). INSPEC Accession Number: 16429142, Electronic ISSN: 1948-5727 (2016).
[20] Alzuaga S., Ballandras S., Bastien F., Daniau W., Gauthier-Manuel B., Manceau J.F., Cretin B., Vairac P., Laude V., Khelif A., Duhamel R., A Large Scale XY Positioning and Localisation System of Liquid Droplet Using SAW on LiNbO3, IEEE Ultrasonics Symposium, 32: 1790-1793 (2003).
[21] Wang T., Ke M., Qiu C., Liu Z., Particle Trapping and Transport Achieved via an Adjustable Acoustic Field above a Phononic Crystal Plate, Journal of Applied Physics, 119: 214502 (2016).
[22] Guo J., Kang Y., Ai Y., Radiation Dominated Acoustophoresis Driven by Surface Acoustic Waves, Journal of Colloid and Interface Science, 455: 203–211 (2015).
[23] Ma, D.J. Collins, Y. Ai, Single-Actuator Bandpass Microparticle Filtration via Traveling Surface Acoustic Waves, Colloid and Interface Science Communications, 16: 6–9 (2017).
[24] Ren L., Chen Y., Li P., Huang P.H., A High-Throughput Acoustic Cell Sorter, Lab. Chip., 15: 3870–3879 (2015).
[25] Li S., Ding X., Guo F., Chen Y., Lapsley M.I., Lin S.-C. S., Wang L., McCoy J.P., Cameron C.E., Huang T.J., An On-Chip, Multichannel Droplet Sorter Using Standing Surface Acoustic Waves, Analytical Chemistry, 85: 5468–5474 (2013).
[27] Lenshof A., Magnusson C., Laurell T., Acoustofluidics 8: Applications of Acoustophoresis in Continuous Flow Microsystems, Lab on a Chip, 12: 1210-1223 (2012).
[28] Muller P.B., Barnkob R., Jense M.J.H., Bruus H., A Numerical Study of Microparticle Acoustophoresis Driven by Acoustic Radiation Forces and Streaming-induced Drag Forces, Lab. on a Chip., 12: 4617-4627 (2012).
[29] Shamloo A., Boodaghi M., Design and Simulation of a Microfluidic Device for Acoustic Cell Separation, Ultrasonics, 84: 234–243 (2018).
[30] Lei J., Cheng F., Li K., Guo Z., Numerical Simulation of Continuous Separation of Microparticles in Two-Stage Acousto-microfluidic Systems, Applied Mathematical Modeling, S0307-904X: 30124-4 (2020).
[31] Bruus, H., “Theoretical Microfluidics,” Oxford University Press, Oxford, 2008.
[32] Trujillo F.J., Juliano P., Barbosa-Ca̓novas G., Knoerzer K., Separation of Suspensions and Emulsions via Ultrasonic Standing Waves–A Review, Ultrasonics Sonochemistry, 21: 2151–2164 (2014).
[33] Trujillo F.J., Eberhardt S., Möller D., Dual J., Knoerzer K., Multiphysics Modelling of the Separation of Suspended Particles via Frequency Ramping of Ultrasonic Standing Waves, Ultrasonics Sonochemistry, 20: 655–666 (2013).
[34] Franke T., Hoppe R.H.W., Linsenmann C., Schmid L., Wixforth A., “Optimal Control of Surface Acoustic Wave Actuated Sorting of Biological Cells,” University of Houston, Department of Mathematics, Numerical Analysis and Scientific Computing, USA, 505-519 (2013)
[35] Jo M.C., Guldiken R., Active Density-based Separation Using Standing Surface Acoustic Waves, Sensors and Actuators A, 187: 22–28 (2012).
[36] Destgeer G., Jung J.H., Park J., Ahmed H., Park K., Ahmed R., Sung H.J., Acoustic Impedance-Based Manipulation of Elastic Microspheres Using Travelling Surface Acoustic Waves, The Royal Society of Chemistry, 7: 22524-22530 (2017).
[37] Petersson F., Nilsson A., Holm C., Jönsson H., Laurell T., Separation of Lipids from Blood Utilizing Ultrasonic Standing Waves in Microfluidic Channels, The Royal Society of Chemistry, 129: 938-943 (2004).
[38] Taatizadeh E., Dalili A., Rellstab‑Sánchez P.I., Tahmooressi H., Ravishankara A., Tasnim N., Hoorfar M., Micron-sized Particle Separation with Standing Surface Acoustic Wave—Experimental and Numerical Approaches, Ultrasonics Sonochemistry, 76: 105651 (2021).