Synthesis of Rare Earth (Dy and Pr) Metal Impregnated Asparagine Functionalized CoFe2O4 Nanocomposite: Two Novel, Efficient and Magnetically-Recoverable Catalysts for the Reduction of 4-nitrophenol

Document Type : Research Article


1 Department of Chemistry, Production Technology Research Institute -ACECR, Ahvaz, I.R. IRAN

2 Department of Chemistry, Gobardanga Hindu College, 24-Parganas (North), INDIA

3 Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN

4 Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, I.R. IRAN


In recent times biomolecules engineered magnetically isolable nanoparticles have garnered significant attention in the nanocatalysis arena due to their outstanding features. Doping of rare earth metals over them brings further novelty to their properties. In this current work, we describe the successful synthesis of rare earth lanthanide (M = Pr, Dy) impregnated asparagine-adorned CoFe2O4 as two novel magnetically isolable nanocomposite catalysts following a post-functionalization approach. The synthesized materials were characterized using physicochemical techniques like FT-IR, SEM, EDX, elemental mapping, and ICP-OES analyses. Subsequently, the catalytic efficiency of the materials was investigated in the reduction of 4-Nitrophenol (4-NP), a well-known carcinogenic contaminant of water. The progress of the reaction and its kinetics were monitored over UV-Vis spectroscopy. Among the two variants, Dy anchored catalyst was found to be more efficient than the Pr which led the reaction to completion in just 8 min. Kinetically, also Dy catalyst exhibited higher rate constants. This is the first report of Pr and Dy-anchored heterogeneous catalysts in the reduction of 4-NP. The current methodology is advantageous in terms of cleanliness, simple procedure, excellent yields in short reaction time, easy magnetic retrieval, and reusability of catalysts following several runs without significant change in catalytic activity.


Main Subjects

[1] Veisi H., Tamoradi T., Rashtiani A., Hemmati S., Karmakar B., Palladium Nanoparticles Anchored Polydopamine-Coated Graphene Oxide/Fe3O4 Nanoparticles (GO/Fe3O4@PDA/Pd) as a Novel Recyclable Heterogeneous Catalyst in the Facile Cyanation of Haloarenes Using K4[Fe(CN)6] as Cyanide Source, J. Indus. Chem. Eng., 90: 379-388 (2020).
[2] Munnik P., de Jongh P.E., de Jong K.P., Recent Developments in the Synthesis of Supported Catalysts, Chem. Rev., 115: 6687-6718 (2015).
[3] van Deelen, T.W., Mejia C. H., de Jong K. P., Control of Metal-Support Interactions in Heterogeneous Catalysts to Enhance Activity and Selectivity, Nature Catal., 2: 955-970 (2019).
[4] Liu L., Corma A., Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles, Chem. Rev., 118: 4981-5079 (2018).
[5] Sudarsanam P., Zhong R., den Bosch S.V., Coman S.M., Parvulescu V.I., Sels B.F., Functionalised Heterogeneous Catalysts for Sustainable Biomass Valorization, Chem. Soc. Rev., 47: 8349-8402 (2018).
[6] Daraie M., Tamoradi T., Heravi M.M., Karmakar B., Ce Immobilized 1H-pyrazole-3,5-dicarboxylic Acid (PDA) Modified CoFe2O4: A Potential Magnetic Nanocomposite Catalyst Towards the Synthesis of Diverse benzo[a]pyrano[2,3-c]phenazine Derivatives, J. Molecul. Struc., 1245: 131089 (2021).
[7] Long J., Xu Y., Zhao W., Li H., Yang S., Mesoporous Silica Nanoparticles for Protein Protection and Delivery, Front. Chem., 7: 1-12 (2019).
[8] Kudr J., Haddad Y., Richtera L., Heger Z., Cernak M., Adam V., Zitka O., Magnetic Nanoparticles: From Design and Synthesis to Real World Applications, Nanomaterials, 7: 243-259 (2017).
[9] Bhaduri K., Das B., Kumar R., Mondal S., Chatterjee S., Shah S., Bravo-Suarez J.J., Chowdhury B., Recyclable Au/SiO2-Shell/Fe3O4-Core Catalyst for the Reduction of Nitro Aromatic Compounds
in Aqueous Solution, ACS Omega., 4: 4071-4081 (2019).
[10] Veisi H., Najafi S., Hemmati S., Palladium Nanoparticles Anchored Polydopamine-Coated Graphene Oxide/Fe3O4 Nanoparticles (GO/Fe3O4@PDA/Pd) as a Novel Recyclable Heterogeneous Catalyst in the Facile Cyanation of Haloarenes Using K4[Fe(CN)6] as Cyanide Source, J. Industrial Engineer. Chem., 90: 379-388 (2017).
[11] Tamoradi T., Karmakar B., Kamalzare M., Bayat M., Kal-Koshvandi A.T., Maleki A., J. Mol. Struct., Synthesis of Eu(III) Fabricated Spinel Ferrite Based Surface Modified Hybrid Nanocomposite: Study of Catalytic Activity Towards The Facile Synthesis of Tetrahydrobenzo[B]Pyrans, J. Molecul. Struct., 1219: 128598 (2020).
[12] Baig R.B.N., Varma R.S., Magnetically Retrievable Catalysts for Organic Synthesis, Chem. Commun., 49: 752-770 (2013).
[13] Nemati M., Tamoradi T., Veisi H., Immobilization of Gd (III) Complex on Fe3O4: A Novel and Recyclable Catalyst for Synthesis of Tetrazole and S–S Coupling, Polyhedron., 167: 75-84 (2019).
[14] Nasrollahzadeh M., Issaabadi Z., Sajadi S.M., Fe3O4@SiO2 Nanoparticle Supported Ionic Liquid for Green Synthesis of Antibacterially Active 1-Carbamoyl-1-Phenylureas in Water, RSC Adv., 8: 27631-27644 (2018).
[15] Narollahzadeh M., Issaabadi Z., Varma R.S., Magnetic Lignosulfonate-Supported Pd Complex: Renewable Resource-Derived Catalyst for Aqueous Suzuki–Miyaura Reaction, ACS Omega., 4: 14234–14241 (2019)
[16] Gawande M.B., Branco P.S., Varma R.S., Nano-Magnetite (Fe3O4) as a Support for Recyclable Catalysts in the Development of Sustainable Methodologies, Chem. Soc. Rev., 42: 3371-3393 (2013).
[17] Moghaddam F.-M., Tavakoli G., Rezvani H.R., A Copper-Free Sonogashira Reaction Using Nickel Ferrite as Catalyst in Water, Catal.Commun., 60: 82-87 (2015).
[18] Tamoradi T., Daraie M., Heravi M.M., Karmakar B., Erbium Anchored Iminodiacetic Acid (IDA) Functionalized CoFe2O4 Nano Particles: An Efficient Magnetically Isolable Nanocomposite for the Facile Synthesis of 1,8-Naphthyridines, New J. Chem., 44: 11049-11055 (2020).
[19] Daraie M., Heravi M.M., Tamoradi T., Investigation of Photocatalytic Activity of Anchored Dysprosium and Praseodymium Complexes on CoFe2O4 in Synthesis of Pyrano[2,3‐d]pyrimidine Derivatives, Chem Select., 4, 10742-10747 (2019).
[20] Tamoradi T., Veisi H., Karmakar B., Gholami J., A Competent Green Methodology for the Synthesis of Aryl Thioethers and 1H-Tetrazole over Magnetically Retrievable Novel CoFe2O4@l-Asparagine Anchored Cu, Ni Nanocatalyst, Material Sci Engineer: C, 107: 110260 (2020).
[21] Dewan A., Sarmah M., Thakur A.J., Bharali P., Bora U., Greener Biogenic Approach for the Synthesis of Palladium Nanoparticles Using Papaya Peel: An Eco-Friendly Catalyst for C–C Coupling Reaction, ACS Omega., 3: 5327–5335 (2018).
[22] Abboud Y., Saffaj T., Chagraoui A., El Bouari A., Brouzi K., Tanane O., Ihssane B., Biosynthesis, Characterization and Antimicrobial Activity of Copper Oxide Nanoparticles (CONPs) Produced Using Brown Alga Extract (Bifurcaria bifurcata), Appl. Nanosci., 4: 571-576 (2014).
[23] Sarmah M., Neog A.B., Boruah P.K., Das M.R., Bharali P., Bora U., Effect of Substrates on Catalytic Activity of Biogenic Palladium Nanoparticles in C–C Cross-Coupling Reactions, ACS Omega., 4, 3329–3340 (2019).
[24] Dumrongrojthanath P., Thongtem T., Phuruangrat A., Thongtem S., Synthesis and Characterization of Hierarchical Multilayered Flower-Like Assemblies of Ag Doped Bi2WO6 and Their Photocatalytic Activities, Superlattices Microstruct. 64: 196-203 (2013).
[25] Phuruangrat A., Maneechote A., Dumrongrojthanath P., Ekthammathat N., Thongtem S., Thongtem T., Effect of pH on Visible-Light-Driven Bi2WO6 Nanostructured Catalyst Synthesized by Hydrothermal Method, Superlattices Microstruct., 78: 106-115 (2015).
[26] Ghasemi Z., Abdi V., Sourinejad I., Green fabrication of Ag/AgCl@TiO2 Superior Plasmonic Nanocomposite: Biosynthesis, Characterization and Photocatalytic Activity under Sunlight, J Alloy Compd., 841: 155593 (2020).
[27] Moradi N., Amin M.M., Fatehizadeh A., Ghasemi Z., Degradation of UV-Filter Benzophenon-3 in Aqueous Solution Using TiO2 Coated on Quartz Tubes, J. Environ. Health Sci. Eng., 16: 213-218 (2018).
[28] Abdi V., Ghasemi Z., Sourinejad I., Comparative Study of the Ethanolic and Aqueous Avicennia Marina Mangrove Extracts on the Biosynthesis of AgCl@ TiO2 nanocomposite, Iran. J. Chem. Chem. Eng. (IJCCE), 40(5): 1375-1385 (2021).
[29] Veisi H., Mohammadi L., Hemmati S., Tamoradi T., Mohammadi P., In Situ Immobilized Silver Nanoparticles on Rubia Tinctorum Extract-Coated Ultrasmall Iron Oxide Nanoparticles:
An Efficient Nanocatalyst with Magnetic Recyclability for Synthesis of Propargylamines by A3 Coupling Reaction, ACS Omega., 4: 13991–14003 (2019).
[30] Abdi V., Sourinejad I., Yusefzadi M., Ghasemi Z., Biosynthesis of Silver Nanoparticles from the Mangrove Rhizophora mucronata: Its Characterization and Antibacterial Potential, Iran. J. Sci. Technol. Trans. A Sci., 43: 2163-2171 (2019).
[31] Farzad E., Veisi H., Fe3O4/SiO2 Nanoparticles Coated with Polydopamine as a Novel Magnetite Reductant and Stabilizer Sorbent for Palladium Ions: Synthetic Application of Fe3O4/SiO2@PDA/Pd for Reduction of 4-Nitrophenol and Suzuki reactions, J. Indus. Eng. Chem., 60: 114-124 (2018).
[32] Sharma R.K., Dutta S., Sharma S., Zboril R., Varma R.S., Gawande M.B., Fe3O4 (iron oxide)-supported Nanocatalysts: Synthesis, Characterization and Applications in Coupling Reactions, Green Chem., 18: 3184-3209 (2016)
[33] Wang D., Astruc D., Fast-Growing Field of Magnetically Recyclable Nanocatalysts, Chem. Rev., 114: 6949-6985 (2014).
[34] Abu-Rezig R., Alper H., Wang D., Post M.L., Metal Supported on Dendronized Magnetic Nanoparticles: Highly Selective Hydroformylation Catalysts, J. Am. Chem. Soc., 128: 5279-5282 (2006).
[35] Tamoradi T., Veisi H., Karmakar B., Pd Nanoparticle Fabricated Tetrahydroharman‐3‐carboxylic Acid Analog Immobilized CoFe2O4 Catalyzed Fast and Expedient C–C Cross and C–S Coupling, Chemistry Select., 4: 10953-10959 (2019).
[36] Tamoradi T., Veisi H., Karmakar B., Gholami, J. Preparation, Structural Characterization, and Catalytic Performance of Green Synthesized Cu/Fe3O4 Nanocomposite as Recyclable Nanocatalyst for Synthesis of Pyrano[3,2-C]Chromene Derivatives, Mater Sci Eng C., 107: 110260 (2020).
[37] Tamoradi T., Taheri A., Vahedi S., Ghadermaji M., Gd (III) and Tb (III) Immobilized Tryptophan Functionalized Magnetic Nanoparticles for Eco-Friendly Oxidation Reactions, Solid State Sci., 97: 105981 (2019).
[38] Tamoradi T., Ghorbani-Choghamarani A., Ghadermazi M., CoFe2O4@glycine-M (M= Pr, Tb and Yb): Three Green, Novel, Efficient and Magnetically-Recoverable Nanocatalysts for Synthesis of 5‐substituted 1H–tetrazoles and Oxidation of Sulfides in Green Condition, Solid State Sci., 88: 81-94 (2019).
[39] Veisi H., Tamoradi T., Karmakar B., Mohammadi P., Hemmati S., In Situ Biogenic Synthesis of Pd Nanoparticles over Reduced Graphene Oxide by Using a Plant Extract (Thymbra spicata) and Its Catalytic Evaluation Towards Cyanation of Aryl Halides, Mater Sci Eng C., 104: 109919 (2019).
[40] Tamoradi T., Mousavi S.M., Mohammadi M., Praseodymium(iii) Anchored on CoFe2O4 MNPs:
An Efficient Heterogeneous Magnetic Nanocatalyst for One-Pot, Multi-Component Domino Synthesis of Polyhydroquinoline and 2,3-dihydroquinazolin-4(1H)-one Derivatives, New J. Chem., 44: 3012-3020 (2020).
[41] Veisi H., Moradi S.B., Saljooqi A., Safarimehr P., Silver Nanoparticle-Decorated on Tannic Acid-Modified Magnetite Nanoparticles (Fe3O4@TA/Ag) for Highly Active Catalytic Reduction of 4-Nitrophenol, Rhodamine B and Methylene Blue, Mat. Sci. Eng. C., 100: 445-452 (2019)
[42] Veisi H., Sarachegol P., Hemmati S., Palladium(II) Anchored On Polydopamine Coated-Magnetic Nanoparticles (Fe3O4@PDA@Pd(II)): A Heterogeneous and Core–Shell Nanocatalyst in Buchwald–Hartwig C–N Cross Coupling Reactions, Polyhedron., 156: 64-71 (2018).
[43] Tamoradi T, Ghorbani-Choghamarani A., Ghadermazi M., Fe3O4–adenine–Zn: A Novel, Green, and Magnetically Recoverable Catalyst for the Synthesis of 5-Substituted Tetrazoles and Oxidation of Sulfur Containing Compounds, New J. Chem., 41: 11714-11721 (2017).
[44] Tamoradi T., Mehraban Esfandiari B., Ghadermaji M., Ghorbani-Choghamarani A., Immobilization of a Nickel Complex onto Functionalized Fe3O4 nanoparticles: A Green and Recyclable Catalyst
for Synthesis of 5-Substituted 1H-Tetrazoles and Oxidation Reactions, Res. Chem. Intermed., 44: 1363-1380 (2018).
[45] Veisi H., Taheri S., Hemmati S., Preparation of Polydopamine Sulfamic Acid-Functionalized Magnetic Fe3O4 Nanoparticles with a Core/Shell Nanostructure as Heterogeneous and Recyclable Nanocatalysts for the Acetylation of Alcohols, Phenols, Amines and Thiols under Solvent-Free Conditions, Green Chem., 18: 6337-6348 (2016).
[46] Veisi H., Pirhayati M., Kakanejadifard A., Mohammadi P., Abdi M.R., Gholami J., Hemmati S., In Situ Green Synthesis of Pd Nanoparticles on Tannic Acid-Modified Magnetite Nanoparticles
as a Green Reductant and Stabilizer Agent: Its Application as a Recyclable Nanocatalyst (Fe3O4@TA/Pd) for Reduction of 4-Nitrophenol and Suzuki Reactions, Chemistry Select., 3: 1820-1826 (2018).
[47] Naseem K., Begum R., Farooqi Z.H., Catalytic Reduction of 2-nitroaniline: A Review, Environ. Sci. Pollut. Res. 24: 6446 (2017)
[48] Atarod M., Nasrollahzadeh M., Sajadi S.M., Green synthesis of Pd/RGO/Fe3O4 Nanocomposite Using Withania Coagulans Leaf Extract and its Application as Magnetically Separable and Reusable Catalyst for the Reduction of 4-Nitrophenol, J. Colloid Interface Sci., 465, 249-258 (2016).
[49] Nasrollahzadeh M., Issaabadi Z., Safari R., Synthesis, Characterization and Application of Fe3O4@SiO2 Nanoparticles Supported Palladium(II) Complex as a Magnetically Catalyst for the Reduction of 2,4-Dinitrophenylhydrazine, 4-Nitrophenol and Chromium(VI): A Combined Theoretical (DFT) and Experimental Study, Sep. Purif. Technol., 209: 136-144 (2019).
[50] Baran T., Biosynthesis of Highly Retrievable Magnetic Palladium Nanoparticles Stabilized on Bio-Composite for Production of Various Biaryl Compounds and Catalytic Reduction of 4-Nitrophenol, Catal. Lett.,149: 1721-1729 (2019).
[51] Farzad E., Veisi H., Fe3O4/SiO2 Nanoparticles Coated with Polydopamine as a Novel Magnetite Reductant and Stabilizer Sorbent for Palladium Ions: Synthetic Application of Fe3O4/SiO2@PDA/Pd for Reduction of 4-Nitrophenol and Suzuki Reactions, J. Ind. Eng. Chem. 60: 114-124 (2018).
[52] Veisi H., Ozturk T., Karmakar B., Tamoradi T., Hemmati S., In Situ Decorated Pd NPs on Chitosan-Encapsulated Fe3O4/SiO2-NH2 as Magnetic Catalyst in Suzuki-Miyaura Coupling and 4-Nitrophenol Reduction, Carbohyd. Polym. 35: 115966 (2020).
[53] Chang Y.C., Chen D.H., Catalytic Reduction of 4-Nitrophenol by Magnetically Recoverable Au Nanocatalyst, J. Hazard. Mater., 165: 664-669 (2020).
[54] Ayad M.M., Amer W.A., Kotp M.G., Magnetic Polyaniline-Chitosan Nanocomposite Decorated with Palladium Nanoparticles for Enhanced Catalytic Reduction of 4-Nitrophenol, Mol. Catal., 439: 72-80 (2017).
[55] Abay A.K., Chen X., Kuo D.H., Highly Efficient Noble Metal Free Copper Nickel Oxysulfide Nanoparticles for Catalytic Reduction of 4-Nitrophenol, Methyl Blue, and Rhodamine-B Organic Pollutants, New J. Chem., 41: 5628-5638 (2017).
[56] Wu G., Liu X., Zhou P., Wang L., Hegazy M., Huang X., Huang Y., A Facile Approach for the Reduction of 4‑Nitrophenol and Degradation of Congo Red Using Gold Nanoparticles or Laccase Decorated Hybrid Inorganic Nanoparticles/Polymer-Biomacromolecules Vesicles, Mat. Sci. Eng. C., 94: 524-533 (2019).
[57] Shokouhimehr M., Lee J. E., Han S. I., Hyeon T., Magnetically Recyclable Hollow Nanocomposite Catalysts for Heterogeneous Reduction of Nitroarenes and Suzuki Reactions, Chem. Commun., 49: 4779-4781 (2013).
[58] Feng Y.-S., Ma J.-J., Kang Y.-M., Xu H.-J., PdCu Nanoparticles Supported on Graphene:
An Efficient and Recyclable Catalyst for Reduction  of Nitroarenes, Tetrahedron, 70: 6100-6105
[59] Fountoulaki S., Daikopoulou V., Gkizis P.L., Tamiolakis I., Armatas G.S., Lykakis I. N., Mechanistic Studies of the Reduction of Nitroarenes by NaBH4 or Hydrosilanes Catalyzed by Supported Gold Nanoparticles, ACS Catal., 4: 3504 (2014).
[60] Nasrollahzadeh M., Sajadi S.M., Rostami-Vartooni A., Alizadeh M., Bagherzadeh M., Green Synthesis of the Pd Nanoparticles Supported on Reduced Graphene Oxide Using Barberry Fruit Extract and its Application as a Recyclable and Heterogeneous Catalyst for the Reduction of Nitroarenes, J. Colloid Interf. Sci. 466, 360-368 (2016).
[61] Shi Q., Lu R., Lu L., Fu X., Zhao D., Efficient Reduction of Nitroarenes over Nickel‐Iron Mixed Oxide Catalyst Prepared from a Nickel‐Iron Hydrotalcite Precursor, Adv. Synth. Catal., 349: 1877-1881 (2007).
[62] Motoyama Y., Kamo K., Nagash H., Catalysis in polysiloxane Gels: Platinum-Catalyzed Hydrosilylation of Polymethylhydrosiloxane Leading to Reusable Catalysts for Reduction of Nitroarenes, Org. Lett., 11: 1345-1348 (2009).
[63] Jagadeesh R.V., Wienhofer G., Westerhaus F.A., Surkus A.-E., Pohl M.-M., Junge H., Junge K., Beller M., Efficient and Highly Selective Iron-Catalyzed Reduction of Nitroarenes, Chem. Commun.,47: 10972-10974 (2011).
[64] Gawande M.B., Rathi A.K., Branco P.S., Nogueira I. D., Velhinho A., Shrikhande J.J., Indulkar U.U., Jayaram R.V., Ghumman C.A.A., Bundaleski N.,  Teodoro O.M.N.D., Regio- and Chemoselective Reduction of Nitroarenes and Carbonyl Compounds over Recyclable Magnetic FerriteNickel Nanoparticles (Fe3O4Ni) by Using Glycerol as a Hydrogen Source, Chem. Eur. J., 18: 12628 (2012).