Study of the Effect of Poly(ethylene glycol) on the Nifedipine Microencapsulation and Release

Document Type : Research Article


Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, INDONESIA


Nifedipine is a dihydropyridine derivate calcium channel blocker, suitable as first-line therapy for patients with hypertension. When blood pressure is high, nifedipine will prevent calcium to pass into cardiac and vascular smooth muscle cells. Nonetheless, nifedipine has a low elimination half-life that makes nifedipine needs to be consumed repeatedly to enhance its bioavailability, and thus, gives rise to nifedipine concentration in blood. Hence, a controlled drug delivery system is needed wherein the drug could be delivered at the desired time. One of the options in drug delivery is drug microencapsulation using a polymer as a coating material. In this study, nifedipine was coated with poly(D-L lactic acid) (PDLLA)/poly(ethylene glycol) (PEG) polyblend also polycaprolactone (PCL)/PEG polyblend using solvent evaporation technique. The effect of the mass composition of the polyblend and molecular weight of PEG on the encapsulation efficiency and drug release was investigated. Microcapsules with the variation of PDLLA/PEG and PCL/PEG composition and PEG molecular weight had an encapsulation efficiency of about 90%-92%. Microcapsules with PDLLA/PEG600 (9/1) exhibited the highest drug release of 43.2% with an encapsulation efficiency of 91.96% whereas microcapsules with PCL/PEG400 (7/3) had the highest drug release of 44% with an encapsulation efficiency of 90.64%.


Main Subjects

[1] Forouzanfar M.H., Liu P., Roth G.A., Ng M., Biryukov S., Marczak L., Alexander L., Estep K., Abate K.H., Akinyemiju T.F., Ali R., Alvis-Guzman N., Azzopardi P. Banerjee A., Bärnighausen T, Basu A., Bekele T., Bennett D.A., Biadgilign S., Catalá-López F., Feigin V.L., Fernandes J.C., Fischer F., Gebru A.A., Gona P., Gupta R., Hankey G.J., Jonas J.B., Judd S.E., Khang Y-H., Khosravi A., Kim Y.J., Kimokoti R.W., Kokubo Y., Kolte D., Lopez A., Lotufo P.A., Malekzadeh R., Melaku Y.A., Mensah G.A., Misganaw A., Mokdad A.H., Moran A.E., Nawaz H., Neal B., Ngalesoni F.N., Ohkubo T., Pourmalek F., Rafay A., Rai R.K., Rojas-Rueda D., Sampson U.K., Santos I.S., Sawhney M., Schutte A.E., Sepanlou S.G., Shifa G.T., Shiue I., Tedla B.A., Thrift A.G., Tonelli M., Truelsen T., Tsilimparis N., Ukwaja K.N., Uthman O.A., Vasankari T., Venketasubramanian N., Vlassov V.V., Vos T., Westerman R., Yan L.L., Yano Y., Yonemoto N., Zaki M.E.S., Murray C.J.L, Global Burden of Hypertension and Systolic Blood Pressure of at Least 110 to 115mmHg, 1990-2015, JAMA - J. Am. Med. Assoc., 31(2): 165-182 (2017).
[2] Snider M.E., Nuzum D.S., Veverka A., Long-Acting Nifedipine in the Management of the Hypertensive Patient, Vasc. Health Risk Manag., 4(6): 1249-1257 (2008).
[3] Elliott W.J., Ram C.V., Calcium Channel Blockers, J. Clin. Hypertens., 13(9): 687-689 (2011).
[4]    Javed I., Ranjha N.M., Mahmood K., Kashif S., Rehman M., Usman F., Drug Release Optimization From Microparticles of Poly(ε-caprolactone) and Hydroxypropyl Methylcellulose Polymeric Blends: Formulation and Characterization, J. Drug Deliv. Sci. Technol., 24(6): 607-612 (2014).
[5] Sailaja K., Jyothika M., A Review on Microcapsules, CIBTech J. Pharm. Sci., 4(2): 26-33 (2015).
[6] Saini P., Arora M., Kumar M. N. V. R, Poly(lactic acid) Blends in Biomedical Applications, Adv. Drug Deliv. Rev., 107: 47-59 (2016).
[8] Li F.J., Zhang S.D., Liang J.Z., Wang J.Z., Effect of Polyethylene Glycol on the Crystallization and Impact Properties of Polylactide-Based Blends, Polym. Adv. Technol., 26(5): 465-475 (2015).
[9] Tiwari S., Verma P., Microencapsulation Technique by Solvent Evaporation Method, Int. J. Pharm. Life Sci.(IJPLS), 2(8): 998-1005 (2011).
[10] Budianto E., Astuti S.H., Environmental Friendly Carrier Material for Nifedipine as Hypertension Drug, Glob. J. Environ. Sci. Manag., 6(4): 523-536 (2020).
[11] Nag D., Nath B., Review on Solvent Evaporation Technique: a Promising Method for Microencapsulation, World J. Pharm. Res., 7(11): 356-372 (2018).
[12] Thomas S., "Handbook of Biopolymer-Based Materials", Wiley-VCH Verlag GmbH & Co. KGaA, Germany (2013).
[13] Field J.R., Sternhell L.D., Kalman S., "Organic Structures from Spectra", John Wiley & Sons, Ltd., United Kingdom (2011).
[14] Khairuddin, Pramono E., Utomo S.B., Wulandari V., Zahrotul A.W., Clegg F., FTIR Studies on the Effect of Concentration of Polyethylene Glycol on Polimerization of Shellac, J. Phys. Conf. Ser., 776(1): 012053 (2016).
[16] Jusoh N., Norasikin O., Stability of Water-in-Oil Emulsion in Liquid Membrane Prospect, Malaysian J. Fundam. Appl. Sci., 12(3): 114-116 (2017).
[18] Xia Y., Daniel W.P., Uniform Biodegradable Microparticle Systems for Controlled Release, Chem. Eng. Sci., 125: 129-143 (2015).
[19] Avachat A.M., Bornare N. P., Dash R.R., Sustained Release Microspheres of Ropinirole Hydrochloride: Effect of Process Parameters, Acta Pharm., 61(4): 363-376 (2011).
[20] Castellanos I. J., Flores G., and Griebenow K., Effect of the Molecular Weight of Poly(Ethylene Glycol) Used as Emulsifier on Α-Chymotrypsin Stability Upon encapsulation in PLGA microspheres, J. Pharm. Pharmacol., 57(10): 1261-1269 (2005).
[21] Singh M.N., Hemant K.S.Y., Ram M., Shivakumar H.G., Microencapsulation: A Promising Technique for Controlled Drug Delivery, Res. Pharm. Sci., 5(2): 65-77 (2010).
[22] Akbari J., Enayatifard R., Saeedi M., and Saghafi M., Influence of Hydroxypropyl Methylcellulose Molecular Weight Grade on Water Uptake, Erosion and Drug Release Properties of Diclofenac Sodium Matrix Tablets, Trop. J. Pharm. Res., 10(5): 535-541 (2011).
[23] Buske J., König C., Bassarab S., Lamprecht A., Mühlau S., Wagner K. G., Influence of PEG in PEG-PLGA Microspheres on Particle Properties and Protein Release, Eur. J. Pharm. Biopharm., 81(1): 57-63 (2012).
[24] Dash T.K., Konkimalla V.B., Polymeric Modification and Its Implication in Drug Delivery: Poly-ε-caprolactone (PCL) as a Model Polymer, Mol. Pharmaceutics, 9(9): 2365-2379 (2012).
[25] Bartnikowski M., Dargaville T. R., Ivanovski S., Hutmacher D.W., Degradation Mechanisms of Polycaprolactone in the Context of Chemistry, Geometry and Environment, Prog. Polym. Sci., 96: 1–20 (2019).
[26] Moura N. K., Siqueira I.A.W.B., Machado J.P.B., Kido H.W., Avanzi I.R., Renno A.C.M., Triches E.S., Passador F.R, Production and Characterization of Porous Polymeric Membranes of PLA/PCL Blends with the Addition of Hydroxyapatite, J. Compos. Sci., 3(2): 45 (2019).
[27] Sheshala R., Peh K.K., Darwis Y., Preparation, Characterization, and in Vivo Evaluation of Insulin-Loaded PLA-PEG Microspheres for Controlled Parenteral Drug Delivery, Drug Dev. Ind. Pharm., 35(11): 1364–1374 (2009).
[28] Teixeira S., Eblagon K.M., Miranda F., Pereira M.F.R., Figueiredo J.L., Towards Controlled Degradation of Poly(lactic) Acid in Technical Applications, C, 7(2): 42 (2021).
[29] Castillo R.V., Müller A.J., Crystallization and Morphology of Biodegradable or Biostable Single and Double Crystalline Block Copolymers, Prog. Polym. Sci., 34(6): 516–560 (2009).