Synthesis, Characterization, X-Ray Diffraction Analysis of A Tridentate Schiff Base Ligand and Its Complexes with Co(II), Fe(II), Pd(II) and Ru(II): Bioactivity Studies

Document Type : Research Article

Authors

1 Department of Food Processing, Vocational School of Technical Sciences, Muş Alparslan University, 49250 Muş, TURKEY

2 Department of Chemistry, Faculty of Arts and Sciences, Muş Alparslan University, 49250 Muş, TURKEY

3 Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Muş Alparslan University, 49250 Muş, TURKEY

4 Department of Chemistry, Faculty of Arts and Sciences, Hitit University, 19100 Çorum, TURKEY

Abstract

This study reports the synthesis of Co(II), Fe(II), Pd(II), and Ru(II) complexes with Schiff base obtained by the condensation of 2-amino-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate with salicylaldehyde. The characterization of the ligand and its complexes was arranged and studied by FT-IR, UV-Vis., 1H and 13C NMR, microanalyses (C, H, N, S), X-Ray Diffraction (XRD) analysis, magnetic susceptibility, mass spectra, and ThermoGravimetry Analysis (TGA) and further was screened for antimicrobial, antioxidant and antiradical activities. The antioxidant activity of the ligand and its metal complexes was examined by using different methods including the total antioxidant activity method, total reduction method, and DPPH. The antimicrobial activities of Schiff base and metal complexes were investigated on bacterial and fungal strains. DNA cleavage experiments of metal complexes with supercoiled pBR322 DNA were detected by gel electrophoresis in the being of H2O2.

Keywords

Main Subjects


[1] Iftikhar B., Javed K., Khan M.S.U., Akhter Z., Mirza B., Mckee V., Synthesis, Characterization and Biological Assay of Salicylaldehyde Schiff Base Cu(II) Complexes and Their Precursors, J. Mol. Struct., 1155: 337-348 (2018).
[2] Yang J., Shi R., Zhou P., Qiu Q., Li H., Asymmetric Schiff Bases Derived from Diaminomaleonitrile and Their Metal Complexes, J. Mol. Struct., 1106: 242-258 (2016).
[3] Liu X., Manzur C., Novoa N., Celedón S., Carrillo D., Hamon J.R., Multi Dentate Unsymmetrically-Substituted Schiff Bases and Their Metal Complexes: Synthesis, Functional Materials Properties, and Applications to Catalysis, Coord. Chem. Rev., 357: 144-172 (2018).
[4] Zakerhamidi M.S., Nejati K., Sorkhabi S.G., Saati M., Substituent and Solvent Effects on the Spectroscopic Properties and Dipole Moments of Hydroxylbenzaldehyde Azo Dye and Related Schiff Bases, J. Mol. Liq., 180: 225-234 (2013).
[5] Arroudj S., Bouchouit M., Bouchouit K., Bouraiou A., Messaadia L., Kulyk B., Figa V., Bouacida S., Sofiani Z., Taboukhat S., Synthesis, Spectral, Optical Properties and Theoretical Calculations on Schiff Bases Ligands Containing o-Tolidine, Op. Mater., 56: 116-120 (2016).
[6] Satheesh C.E., Kumar P.R., Sharma P., Lingaraju K., Palakshamurthy B.S., Naika H.R., Synthesis, Characterization and Antimicrobial Activity of New Palladium and Nickel Complexes Containing Schiff Bases, Inorg. Chim. Acta, 442: 1-9 (2016).
[8] Tan Y-X., Zhang Z-J., Liu Y., Yu J-X., Zhu X-M., Kuang D-Z., Jiang WJ., Synthesis, Crystal Structure and Biological Activity of the Schiff Base Organotin(IV) Complexes Based on Salicylaldehyde-o-aminophenol, J. Mol. Struct., 1149: 874-881 (2017).
[9] Yang J., Shi R., Zhou P., Qiu Q., Li H., Asymmetric Schiff Bases Derived from Diamino Malenitrile and Their Metal Complexes, J. Mol. Struct., 1106: 242-258 (2016).
[10] Zaltariov M.F., Avadanei M., Balan M., Peptanariu D., Vornicu N., Shova S., Synthesis, Structural Characterization and Biological Studies of New Schiff Bases Containing Trimethylsilyl Groups, J. Mol. Struct., 1175: 624-631 (2019).
[11] Sumrra S.H., Habiba U., Zafar W., Imran M., Chohan Z.H., A Review on the Efficacy and Medicinal Applications of Metal-Based Triazole Derivatives, J. Coord. Chem., 73: 2838-2877 (2020).
[12] Buldurun K., Turan N., Aras A., Mantarcı A., Turkan F., Bursal E., Spectroscopic and Structural Characterization, Enzyme Inhibitions, and Antioxidant Effects of New Ru(II) and Ni(II) Complexes of Schiff Base, Chem. Biodivers., 16(8): e1900243 (2019).
[13] Araújo E.L., Hellen de F.G.B., Dockal E.R., Cavalheiro É.T.G., Synthesis, Characterization and Biological Activity of Cu(II), Ni(II) and Zn(II) Complexes of Biopolymeric Schiff Bases of Salicylaldehydes and Chitosan, Int. J. Biol. Macromol., 95: 168-176 (2017).
[15] Szady-Chełmieniecka A., Kołodziej B., Morawiak M., Kamieński B., Schiff W., Spectroscopic Studies of the Intramolecular Hydrogen Bonding in o-Hydroxy Schiff Bases, Derived from Diamino Maleonitrile, and Their Deprotonation Reaction Products, Spectrochim. Acta, Part A, 189: 330-341 (2018).
[16] Buldurun K., Turan K., Bursal E., Aras A., Mantarcı A., Çolak N., Türkan F. Gülçin İ., Synthesis, Characterization, Powder X-Ray Diffraction Analysis, Thermal Stability, Antioxidant Properties and Enzyme Inhibitions of M(II)-Schiff Base Ligand Complexes, J. Biomol. Struct. Dyn., 39: 6480-6487 (2021).
[17] Ceyhan G., Çelik C., Urus S., Demirtaş I., Elmastaş M., Tümer M., Antioxidant, Electrochemical, Thermal, Antimicrobial and Alkane Oxidation Properties of Tridentate Schiff Base Ligands and Their Metal Complexes, Spectrochim. Acta, Part A, 81: 184-198 (2011).
[19] Taha Z.A., Hijazi A.K., Ababneh T.S., Mhaidat I., Ajlouni A.M., Al-Hassan K.A., Mitzithra C., Hamilakis S., Danladi F., Altalafha A.Y., Photophysical Properties and Computational Study of Newly Synthesized Lanthanide Complexes with N-(2-Carboxyphenyl) Salicylideneimine Schiff Base Ligand, J. Lumin., 18: 230-239 (2017).
[21] Pervaiz M., Ahmad I., Yousaf M., Kirn S., Munawar A., Saeed Z., Adnan A., Gulzar T., Kamal T., Ahmad A., Rashid A., Synthesis, Spectral and Antimicrobial Studies of Amino Acid Derivative Schiff Base Metal (Co, Mn, Cu and Cd) Complexes, Spectrochim. Acta, Part A, 206: 642-649 (2019).
[22] Patil S.A., Unki S.N., Kulkarni A.D., Naik V.H., Badami P.S., Co(II), Ni(II) and Cu(II) Complexes with Coumarin-8-yl Schiff-Bases: Spectroscopic, in Vitro Antimicrobial, DNA Cleavage and Fluorescence Studies, Spectrochim. Acta, Part A, 79: 1128-1136 (2011).
[23] Khalid S., Sumrra S.H., Chohan Z.H., Isatin Endowed Metal Chelates as Antibacterial and Antifungal Agents, Sains Malays., 49: 1891-1904 (2020).
[24] Bursal E., Turkan F., Buldurun K., Turan N., Aras A., Çolak N., Murahari M., Yergeri M.C., Transition Metal Complexes of A Multidentate Schiff Base Ligand Containing Pyridine: Synthesis, Characterization, Enzyme Inhibitions, Antioxidant Properties, and Molecular Docking Studies, Biometals, 34: 393-406 (2021).
[29] Ali M.A., Mirza A.H., Ting W.Y., Hamid M.H.S.A., Bernhardt P.V., Butcher R.J., Mixed-Ligand Nickel(II) and Copper(II) Complexes of Tridentate ONS and NNS Ligands Derived from S-Alkyldithiocarbazates with the Saccharination as a Co-Ligand, Polyhedron, 48: 167-173 (2012).
[34] Blois M.S., Antioxidant Determinations by the Use of a Stable Free Radical, Nature, 26: 1199-1200 (1958).
[35] Turan N., Buldurun K., Alan Y., Savci A., Çolak N., Mantarci A., Synthesis, Characterization, Antioxidant, Antimicrobial and DNA Binding Properties of Ruthenium(II), Cobalt(II) and Nickel(II) Complexes of Schiff Base Containing o-Vanillin, Res. Chem. Intermediat., 45: 3525-3540 (2019).
[36] Londershausen M., Approaches to New Parasiticides, Pestic. Sci., 48(4): 269-292 (1996).
[40] Çalık H.S., Ispir I, Karabuga S., Aslantaş M., Ruthenium(II) Complexes of NO Ligands: Synthesis, Characterization and Application in Transfer Hydrogenation of Carbonyl Compounds, J. Organomet. Chem., 801: 122-129 (2016).
[42] Ekennia A.C., Osowole A.A., Olasunkanmi L.O., Onwudiwe D.C., Olubiyi O.O., Ebenso E.E., Synthesis, Characterization, DFT Calculations and Molecular Docking Studies of Metal(II) Complexes, J. Mol. Struct., 1150: 279-292 (2017).
[43] Sathishkumar P.N., Raveendran N., Bhuvanesh N.S.P., Karwembu R., Chemoselective Transfer Hydrogenation of Nitroarenes, Ketones and Aldehydes Using Acylthiourea Based Ru(II)(p-Cymene) Complexes as Precatalysts, J. Organomet. Chem., 876: 57-65 (2018).
[46] More M.S., Joshi P.G., Mishra Y.K., Khanna P.K., Metal Complexes Driven from Schiff Bases and Semicarbazones for Biomedical and Allied Applications: A Review, Mater. Today Chem., 14: 100195 (2019).
[47] Ünver Y., Deniz S., Çelik F., Akar Z., Küçük M., Sancak K., Synthesis of New 1,2,4-Triazole Compounds Containing Schiff and Mannich Bases (Morpholine) with Antioxidant and Antimicrobial Activities, J. Enzyme. Inhib. Med. Chem., 31: 89-95 (2016).
[50] Hellas C.M.Y., Chan H.L., Yang M., Determination of Mode of Interactions Between Novel Drugs and Calf Thymus DNA by Using Quartz Crystal Resonator, Sensors Actuat. B, 81: 283-288 (2002).
[51] Rehman A., Choudhary M.I., Thomsen W.J., “Bioassay Techniques for Drug Development”, Harwood Academic Publishers, Amsterdam, The Netherlands, pp. 9, (2001).
[52] Shungu D.L., Weinberg E., Cerami A.T., Evaluation of Three Broth Disk Methods for Testing the Susceptibility of Anaerobic Bacteria to Imipenem, J. Clin. Microbiol., 21: 875-879 (1985).
[54] Amjad M., Sumrra S.H., Akram M.S., Chohan Z.H., Metal-Based Ethanolamine-Derived Compounds:
A Note on Their Synthesis, Characterization and Bioactivity
, J. Enzyme Inhib. Med. Chem., 31: 88-97 (2016).
[55] Dharamaraj N., Viswanathamurthi P., Natarajan K., Ruthenium (II) Complexes Contain Bidentate Schiff Bases and Their Antifungal Activity, Trans. Met. Chem., 26: 105-109 (2001).
[56] Anacona J.R., Rodriguez A., Synthesis and Antibacterial Activity of Ceftriaxone Metal Complexes, Trans. Met. Chem., 30: 897 (2005).
[57] Venkateswarlu K., Kumar M.P., Rambabu A., Vamsikrishna N., Daravath S., Rangan K., Crystal Structure, DNA Binding, Cleavage, Antioxidant and Antibacterial Studies of Cu(II), Ni(II) and Co(III) Complexes with 2-((Furan-2-yl)methylimino)methyl)- 6-ethoxyphenol Schiff Base, J. Mol. Struct., 1160: 198-207 (2018).