Recent Advances in Bioplastics: Synthesis and Emerging Perspective

Document Type : Review Article


Department of Chemistry, Faculty of Technology and Science, Lovely Professional University, Phagwara, Punjab, INDIA


Recently, the demands for biodegradable and renewable materials for several eco-sustain applications have increased tremendously. This rise in demand is connected to the growing environmental concerns over the extensive use of synthetic and non-biodegradable plastic packaging and the dumping of plastic waste in landfills. Biodegradable bioplastics are polymers that are mineralized into carbon dioxide, methane, water, inorganic compounds, or biomass by specific microorganisms by enzymatic action. As a result, they could be a viable and environmentally friendly alternative to petrochemical plastics.  Bioplastic delivers precisely as per demand exhibiting several advantages: lower carbon footprint, energy efficiency, non-hazardous, stable, cost-efficient, and eco-friendly. Herein, a major focus is given to the discussion of bioplastic production from various sources, their type, and the role of additives to strengthen their chemical and physical properties.  This review article's goal is to provide information about bioplastic synthesis concerning the recycling of bioplastics, thermoplastic biocomposites, and their blends with a special focus on the mechanical recycling of bio-based materials. Additionally, the utilization of these bioplastics in various industries such as the food packaging industry, and the automotive industry has been enlightened.  


Main Subjects

[1] Khosravi-Darani K., Yazdian F., Rashedi H., Madadian Bozorg N., Moradi M., Rezazadeh Mofradnia S., Simulation of Bioreactors for Poly (3-hydroxybutyrate) Production from Natural Gas, Iran. J. Chem. Chem. Eng. (IJCCE), 39(1): 313–336 (2020).
[2] Spiegel S., Recent Advances in Applied Polymer Science., Jr. App. Poly. Sci., 135(24): 46279 (2018).
[3] Barra R., Leonard SA., Whaley C., Bierbaum R., Plastics and the Circular Economy, Sci. Tech. Advis. Panel to Glob Environ Facil., 5: 1–26 (2018).
[4] He M., Wang X., Wang Z., Chen L., Lu Y., Zhang X., Li Me., Liu Z., Zhang Y., Biocompatible and Biodegradable Bioplastics Constructed from Chitin via a “green” Pathway for Bone Repair, ACS Sustain. Chem. Eng., 5(10): 9126–9135 (2017).
[5] Thiruchelvi R., Das A., Sikdar E., Bioplastics as Better Alternative to Petro Plastic., Mater. Today Proc., 37(2): 1634–1639 (2020).
[6] Maheshwari R., Rani B., Parihar S., Sharma A., Eco-Friendly Bioplastic for Uncontaminated Environment, Res. Jr. of Chem. and Environ. Sci., 1(1): 44–49 (2013).
[7] Pernicova I., Enev V., Marova I., Obruca S., Interconnection of Waste Chicken Feather Biodegradation and Keratinase and Mcl-PHA Production Employing Pseudomonas Putida KT2440., Appl. Food Biotechnol., 6(1):83-90 (2019).
[8] Coppola G., Gaudio MT., Lopresto CG., Calabro V., Curcio S., Chakraborty S., Bioplastic from Renewable Biomass: A Facile Solution for a Greener Environment., Earth Syst. Environ., 2: 1-21 (2021).
[9] Singh R.K., Ruj B., Plastic Waste Management and Disposal Techniques - Indian Scenario, Int. J. Plast. Tech., 19(2): 211–226 (2015).
[10] Selvamurugan Muthusamy M., Pramasivam S., Bioplastics – An Eco-Friendly Alternative to Petrochemical Plastics., Curr World Environ., 14(1): 49–59 (2019).
[11] Lebreton L., Anthony A., Future Scenarios of Global Plastic Waste Generation and Disposal, Pal. Comm., 5(1): 1-11 (2019).
[12] Nielsen T.D., Hasselbalch J., Holmberg K., Stripple J., Politics and the Plastic Crisis: A Review Throughout the Plastic Life Cycle, Wiley Interdiscip. Rev. Energy Environ., 9(1): 1–18 (2020).
[13] Mazhandu Z.S., Muzenda E., Mamvura T.A., Belaid M., Nhubu T., Integrated and Consolidated Review of Plastic Waste Management and Bio-Based Biodegradable Plastics: Challenges and Opportunities, Sustain., 12(20): 1–57 (2020).
[14] Reddy R.L., Reddy V.S., Gupta G.A., Study of Bio-plastics as Green & Sustainable Alternative to Plastics, Inter. Jr. of Emer. Tech. and Adv. Eng., 3(5): 76–81 (2013).
[15] Favaro L., Basaglia M., Rodriguez J.E.G., Morelli A., Ibraheem O., Pizzocchero V., Casella S., Bacterial Production of PHAs from Lipid-Rich by-Products., Appl. Food Biotechnol., 6(1): 45-52 (2019).
[16] Brigham C.J., Riedel S.L., The Potential of Polyhydroxyalkanoate Production from Food Wastes, Appl. Food Biotechnol., 6(1): 7-18 (2018).
[17] Thakur S., Chaudhary J., Sharma B., Verma A., Tamulevicius S., Thakur V.K., Sustainability of Bioplastics: Opportunities and Challenges, Curr. Opin. Green Sustain. Chem., 13: 68–75 (2018).
[18] Winfield IJ., Plastic Soup: an Atlas of Ocean Pollution, J. Fish. Biol., 95(2): 686–686 (2019).
[19] Muhammad Shamsuddin I., Bioplastics as Better Alternative to Petroplastics and Their Role in National Sustainability: A Review, Adv. Biosci. Bioeng., 5(4): 63 (2017).
[20] Proshad R., Kormoker T., Islam MS., Haque MA., Rahman MM., Mithu MMR., Toxic Effects of Plastic on Human Health and Environment : A Consequences of Health Risk Assessment in Bangladesh, Int. J. Heal., 6(1): 1 (2017).
[21] Rosen MA., Kishawy HA., Sustainable Manufacturing, and Design: Concepts, Practices and Needs, Sustainability., 4(2): 154–174 (2012).
[23] Bashir S., Thakur A., Lgaz H., Chung IM., Kumar A., Corrosion Inhibition Efficiency of Bronopol on Aluminium in 0.5 M HCl Solution: Insights from Experimental and Quantum Chemical Studies, Surfaces and Interfaces, 20: 100542 (2020).
[24] Bashir S., Thakur A., Lgaz H., Chung I-M., Kumar A., Corrosion Inhibition Performance of Acarbose on Mild Steel Corrosion in Acidic Medium: An Experimental and Computational Study, Arab. J. Sci., 45: 4773-4783 (2020).
[25] Bashir S., Thakur A., Lgaz H., Chung I-M., Kumar A., Computational and Experimental Studies on Phenylephrine as Anti-Corrosion Substance of Mild Steel in Acidic Medium, J. Mol. Liq., 293: 111539 (2019).
[26] OECD. Considerations and Criteria for Sustainable Plastics from a Chemicals Perspective, OECD. Glob. Forum. Environ. Plast. a Circ. Econ. (May): 1–58 (2019).
[27] El-malek F.A., Khairy H., Farag A., Omar S., The Sustainability of Microbial Bioplastics, Production and Applications, In.t J. Biol. Macromol., 157: 319–328 (2020).
[29] Ferreira R., Renata S., Ferreira C., Reinert O., Gandolfi R., Brito L., Characterization of Starch-Based Bioplastics from Jackfruit Seed Plasticized with Glycerol., J. Food. Sci. Technol., 55(1): 278–286 (2017).
[31] Cinelli P., Mallegni N., Gigante V., Montanari A., Seggiani M., Coltelli M.B., Bronco S., Lazzeri, A., Biocomposites Based on Polyhydroxyalkanoates and Natural Fibres from Renewable Byproducts., Appl. Food Biotechnol., 6(1):35-43 (2019).
[32] Zhong Y., Godwin P., Jin Y., Xiao H., Biodegradable Polymers and Green-Based Antimicrobial Packaging Materials: A Mini-Review, Adv. Ind. Eng. Polym. Res., 3(1): 27–35 (2020).
[33] Tsang YF., Kumar V., Samadar P., Yang Y., Lee J., Song H.., Production of Bioplastic Through Food Waste Valorization, Environ. Int., 127(March): 625–644 (2019).
[34] Fatimah N., Sultan K., Lutfi W., Johari W., The Development of Banana Peel / Corn Starch Bioplastic Film : A Preliminary Study, Bio, Sci, Tech., 5(1): 12-17 (2017).
[35] Muthuraj R., Misra M., Mohanty AK., Injection Molded Sustainable Biocomposites from Poly(butylene succinate) Bioplastic and Perennial Grass, ACS Sustain. Chem. Eng., 3(11): 2767-2776 (2015).
[36] Padil VVT., Senan C., Agarwal S., Varma RS., Bioplastic Fibers from Gum Arabic for Greener Food Wrapping Applications, ACS Sust. Chem. Eng., 7(6): 5900-5911 (2019).
[37] Cardona CA., Orrego CE., Paz IC., The Potential for Production of Bioethanol and Bioplastics from Potato Starch in Colombia, Fruit, Veg, Cer, Sci, Biotech., 3: 102-114 (2009).
[38] Starch G., Plasticizer S.A.S., Sariningsih N., Putra Y.P., Pamungkas W.P., Amri A., Bioplastic from Chitosan and Yellow Pumpkin Starch with Castor Oil as Plasticizer Bioplastic from Chitosan and Yellow Pumpkin Starch with Castor Oil as Plasticizer., Mat. Sci.  Eng., 333(1):1–8 (2018).
[39] Bilo F., Pandini S., Sartore L., Depero L.E., Gargiulo G., Bonassi A., A Sustainable Bioplastic Obtained from Rice Straw, J. Clean. Prod., 200: 357–368 (2018).
[40] Maheswari NU., Ahilandeswari K., Production of Bioplastic Using Spirulina Platensis and Comparison with Commercial Plastic., Res. Environ. Life Sci., 4(3): 133-136 (2011).
[41] Cifriadi A., Panji T., Wibowo N.A., Syamsu K., Bioplastic Production from Cellulose of Oil Palm Empty Fruit Bunch Bioplastic Production from Cellulose of Oil Palm Empty Fruit Bunch, Ear. Environ. Sci., 65(1): 012011 (2017).
[42] Wang K., Mandal A., Ayton E., Hunt R., Zeller M. A.,  Sharma S., Modification of Protein Rich Algal-Biomass To Form Bioplastics And Odor Removal, Pro. Byprod., 1: 107-111 (2016).
[43] Fathanah U., Lubis M.R., Nasution F., Masyawi M.S., Characterization of Bioplastic Based from Cassava Crisp Home Industrial Waste Incorporated with Chitosan and Liquid Smoke, Ear. Environ. Sci., 334(1): 012073 (2018).
[44] Patel A.V., Panchal T., Thomas M., “Preparation and Characterization of Biodegradable Packaging Film Using Groundnut Protein Isolate", 24th European Biomass Conference and Exhibition, Amsterdam, The Netherlands, (2016).
[45] Kartika T., Harahap M.B., Ginting M.H.S., Utilization of Mango Seed Starch in Manufacture of Bioplastic Reinforced with Microparticle Clay Using Glycerol as Plasticizer, Mat. Sci. Engin., 309(1): 012068 2018
[47] Shellikeri A., Kaulgud V., Yaradoddi J., Ganachari S., Banapurmath N.,  Shettar A.,  Development of Neem Based Bioplastic for Food Packaging Application Development of Neem Based Bioplastic for Food Packaging Application, Mat. Sci. Eng., 376(1): 012052 (2018).
[48] Revadhi T., Nanthini R., Biosynthesis of Polyhydroxybutyrate from Giant Reed Grass Hydrolysate and Evaluation of its Drug Releasing Profiles., Jr. of Drug Del. and Thera., 9: 8–15 (2019).
[49] Lim J., Hii S., Chee S., Wong C., Sargassum siliquosum J . Agardh Extract as Potential Material for Synthesis of Bioplastic Film, Jr. App. Phyc., 30(6): 3285-3297 (2018).
[50] Hempel F., Bozarth AS., Lindenkamp N., Klingl A., Zauner S., Linne U., Microalgae as Bioreactors for Bioplastic Production, Agris, 2–7 (2011).
[51] Luengo J.M., Garcı́a B., Sandoval A., Naharro G., Olivera ER,  Bioplastics from Microorganisms, Curr. Opi. Micro., 6(3): 251-260 (2003)
[52] Ibrahim M.H.A., Lebbe L., Willems A., Steinbüchel A., A New Thermophile for Bioplastic Synthesis: Comparative Phylogenetic and Physiological Study, AMB Express, 6(1): 1-9 (2016).
[53] Quill F., Ullah A., Vasanthan T., Bressler D., Elias A.L., Wu J., Bioplastics from Feather Quill, Biomacromol., 12(10): 3826-3832. (2011).
[54] Author S.J., Sharma U., Goswami G., Bio-Plastic from Waste Newspaper, Int. Jr. Res. Eng. Tech., 2(30): 1-12 (2018)
[55] Moura I.G. De., Sá A.V. De., Sofia A., Machado L., Vera A., Machado A., Bioplastics from Agro-Wastes for Food Packaging Applications, Food. Pack., 1: 223-267 (2017).
[56] Varna E., Yakar S., Demir M., Possibilities of Bioplastics Production from Fish, Verslas. Tech. Biomedicin. Inovac. Įžvalg., 1(10): 533–539 (2019).
[57] Marturano V., Cerruti C., Ambrogi V., Polymer Additives, Phy. Sci. Rev., 2(6): 0130 (2016).
[58] Iqbal N., Khan A.S., Asif A., Yar M., Haycock J.W., Rehman I.U., Recent Concepts in Biodegradable Polymers for Tissue Engineering Paradigms: A Critical Review, Int. Mater. Rev., 64(2): 91–126 (2019).
[59] Ambrogi V., Carfagna C., Cerruti P., National I., Marturano V., Additives in Polymers, Mod. Poly. Comp., 1: 23-26 (2017).
[60] Poon J., Madden D.C., Wood M.H., Clarke S.M, Characterizing Surfaces of Garnet and Steel, and Adsorption of Organic Additives, Langmuir, 34(26): 7726-7737 (2018).
[61] Innes A., Associates FR., Marietta M., Specialties M., Compounding Metal Magnesium Hydroxide and ATH Flame Retardants Require, Plas. Add. Comp., 1: 22–26 (2002).
[62] Bhattacharya R.R.N., Chandrasekhar K., Roy P., Khan A., Challenges and Opportunities: Plastic Waste Management in India., Ener. Resource Inst., 1 (2018)
[63] Jadhav SD., Jhabarmal J., A Review of Non-Halogenated Flame Retardant, Pharma. Innov. J. 380(5): 380–386 (2018).
[64] Zhao C., Zhou Y., Zhao C., Bao C., Cracking Processes and Coalescence Modes in Rock-Like Specimens with Two Parallel Pre-Existing Cracks, Rock Mech. Rock Eng., 51(11): 3377-3393 (2018).
[65] Fillers F., Gmbh WV., Isbn W., Part One Polymers and Fillers., Func. Fill. Plas., 1: 12-16 (2010).
[67] Frache FBA., Taskin AFE., Edoardo PSC., Fate of Biodegradable Polymers under Industrial Conditions for Anaerobic Digestion and Aerobic Composting of Food Waste, J. Polym. Environ., 28(9): 2539-2550 (2020).
[68] Urbanek A.K., Rymowicz W., Mirończuk A.M., Degradation of Plastics and Plastic-Degrading Bacteria in Cold Marine Habitats, Appl. Microbiol. Biotechnol., 102(18): 7669–7678 (2018).
[69] Folino A., Karageorgiou A., Calabr PS., Biodegradation of Wasted Bioplastics in Natural and Industrial Environments: A Review, Sustain., 12: 1–37 (2020).
[71] Mangaraj S., Yadav A., Bal LM., Dash SK., Mahanti NK., Application of Biodegradable Polymers in Food Packaging Industry: A Comprehensive Review, J. Packag. Techno.l Res., 3(1): 77–96 (2019).
[72] Rahman R., Sood M., Gupta N., Bandral J.D., Bioplastics for Food Packaging : A Review, Int. Jr. Curr. Micro. App. Sci., 8(03): 2311–2321 (2019).
[73] Kumar Y., Shukla P., Singh P., Prabhakaran .PP., Tanwar VK., Bio-Plastics : A Perfect Tool for Eco-Friendly Food Packaging : A Review., Jr. of Food Prod. Develop. Pack., 1: 1–6 (2014).
[74] Jabeen N., Majid I., Nayik GA., Bioplastics and Food Packaging : A Review Bioplastics and Food Packaging : A Review, Cogent. Food. Agric., 42(1): (2015).
[75] Gonçalves de Moura I., Vasconcelos de Sá A., Lemos Machado Abreu A.S., Alves Machado A.V., Bioplastics from Agro-Wastes for Food Packaging Applications, Food Pack., 1: 223-263 (2017).
[76] Sidek I.S., Draman S.F.S., Abdullah S.R.S., Anuar N., Current Development on Bioplastics and Its Future Prospects: an Introductory Review, INWASCON. Technol. Mag., 1: 03–08 (2019).