Investigation of Antibacterial and Cytotoxicity Effect of Green Synthesized TiO2 Nanocomposites, an Experimental and Theoretical Study

Document Type : Research Article


1 Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, I.R. IRAN

2 Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, I.R. IRAN

3 Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, I.R. IRAN

4 Department of Chemistry, Faculty of Science, University of Jiroft. Jiroft, I.R. IRAN

5 Pathology and Stem Cell Research Center, Afzalipour Hospital, Kerman University of Medical Science, Kerman, I.R. IRAN

6 Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, I.R. IRAN


Protecting the hair, skin, or products of itself are utilized by sunscreen filters which were frequently blocked hazardous UV-Vis radiation. Considering its photoprotective impact on the skin facing the radiation of ultraviolet and visible, TiO2 is a common and cost-efficient photocatalytic structure utilized in sunscreens. In this research, the continual process was done to optimize the green synthesis of TiO2 nanoparticles and nanocomposites through a new, easy, cost-efficient, and quick approach to making nanostructures utilizing a sonochemistry method. SiO2, Al2O3, ZnO, and MnO were utilized to compose green synthesized TiO2 nanoparticles for this purpose. The samples were recognized by XRD, FT-IR, DLS, and SEM. Also, the cytotoxicity and antibacterial activity were assessed. DFT computation was performed to identify the connected energy and band gap energy of nanocomposites by B3LYP/Lan2DZ quantum approach. TiO2/Al2O3 showed a lower size and the lowest agglomeration than synthesized TiO2 and other nanocomposites.  Furthermore, all samples indicated strong antibacterial activity against investigated bacteria due to cell death caused by membrane permeability increase and bacterial wall integrity disruption. Nanostructures have cytotoxicity with a low level on A172 cells. The only exception is TiO2/ZnO which indicated a potent index of cytotoxicity on the cancerous cell lines as demonstrated by a low IC50 value of 50 ppm.  The relative energy and band gap of nanocomposites indicated that TiO2/Al2O3 has the best stability in chemical and biochemical mediums among other nanocomposites.  These green synthesized TiO2/Al2O3 nanostructures may have promising applications in nanoformulation to combat bacterial infections in the future. 


Main Subjects

[1] Devasagayam T.P.A., Tilak J.C., Boloor K.K., Sane K.S., Ghaskadbi S.S., Lele R.D., Free Radicals and Antioxidants in Human Health, J. Assoc. Physicians India, 52: 794 (2004).
[2] Nichols J.A., Katiyar S.K., Skin Photoprotection by Natural Polyphenols: Anti-Inflammatory, Antioxidant and DNA Repair Mechanism, Arch. Dermatol. Res., 302: 71 (2010).
[3] Czégény G., Wu M., Dér A., Eriksson L.A., Strid Å., Hideg É., Hydrogen Peroxide Contributes to the ultraviolet-B (280–315 nm) Induced Oxidative Stress of Plant Leaves Through Multiple Pathways, FEBS Lett., 588: 2255 (2014).
[4] J. S.K. and J. N.K., Lipopeptides in Cosmetics, Int. J. Cosmet. Sci., 32: 89 (2010).
[5] Lu P.J., Huang S.C., Chen Y.P., Chiueh L.C., Shih D.Y.C., Analysis of Titanium Dioxide and Zinc Oxide Nanoparticles in Cosmetics, J. Food Drug Anal. 23: 587 (2015).
[6] Wu D., Mao F., Yang Z., Wang S., Zhou Z., Enhanced Osteogenic Activity of Ti Alloy Implants by Modulating Strontium Configuration in their Surface Oxide Layers, Mater. Sci. Semicond. Process., 23: 72 (2014).
[7] Manaia E.B., Kaminski R.C.K., Corrêa M.A., Chiavacci L.A., Ultraviolet Protection Properties of Commercial Sunscreens and Sunscreens Containing ZnO Nanorods,  Brazilian J. Pharm. Sci., 49: 201 (2013).
[8] Wang S.Q., Lim H.W., Principles and Practice of Photoprotection, Princ. Pract. Photoprotection, 1 (2016).
[9] Kyung Jeon S., Ju Kim E., Lee J., Lee S., Potential Risks of TiO2 and ZnO Nanoparticles Released from Sunscreens into Outdoor Swimming Pools, J. Hazard. Mater., 317: 312 (2016).
[10] Piccinno F., Gottschalk F., Seeger S., Nowack B., Industrial Production Quantities and Uses of Ten Engineered Nanomaterials in Europe and the World, J. Nanoparticle Res., 14: (2012).
[11] Smijs T.G., Pavel S., Industrial Production Quantities and Uses of Ten Engineered Nanomaterials in Europe and the World, Nanotechnol. Sci. Appl., 4: 95 (2011).
[12] Lewicka Z.A., Benedetto A.F., Benoit D.N., Yu W.W., Fortner J.D., Colvin V.L., The Structure, Composition, and Dimensions of TiO2 and ZnO Nanomaterials in Commercial Sunscreens, J. Nanoparticle Res., 13: 3607 (2011).
[13] Lahijani B., Hedayati K., Goodarzi M., Magnetic PbFe12O19-TiO2 Nanocomposites and Their Photocatalytic Performance in the Removal of Toxic Pollutants, Main Group Metal Chemistry, 41 (3-4): 53-62 (2018).
[14] Egerton T.A., Tooley I.R., UV Absorption and Scattering Properties of Inorganic‐Based Sunscreens, Int. J. Cosmet. Sci., 34: 117 (2012).
[15] Verma R., Awasthi A., Singh P., Srivastava R., Sheng H., Wen J., Miller D.J., Srivastava A.K., Interactions of Titania Based Nanoparticles with Silica and Green Tea: Photo-Degradation and Luminescence, J. Colloid Interface Sci., 475: 82-95 (2016).
[16] El-Toni A.M., Yin S., Sato T., Ghannam T., Al-Hoshan M., Al-Salhi M., Investigation of Photocatalytic Activity and UV-Shielding Properties for Silica Coated Titania Nanoparticles by Solvothermal Coating, J. Alloys Compd., 508: L1-L4 (2010).
[17] Liu Y., Zhang Y., Ge C., Yin H., Wang A., Ren M., Feng H., Chen J., Jiang T., Yu L., Evolution Mechanism of Alumina Coating Layer on Rutile TiO2 Powders and the Pigmentary Properties, Appl. Surf. Sci., 255: 7427 (2009).
[18] Zhang Y., Yin H., Wang A., Liu C., Yu L., Jiang T., Hang Y., Evolution of Zirconia Coating Layer on Rutile TiO2 Surface and the Pigmentary Property, J. Phys. Chem. Solids, 71: 1458 (2010).
[19] Lee W.A., Pernodet N., Li B., Lin C.H., Hatchwell E., Rafailovich M. H., Multicomponent Polymer Coating to Block Photocatalytic Activity of TiO2 Nanoparticles, Chem. Commun., 4815 (2007).
[20] Morlando A., Sencadas V., Cardillo D., Konstantinov K., Suppression of the Photocatalytic Activity of TiO2 Nanoparticles Encapsulated by Chitosan Through a Spray-Drying Method with Potential for Use in Sunblocking, Powder Technol., 329: 252 (2018).
[21] Yang L., Wang C., Liu Z., Liu X., Song Y., Feng X., Zhang B., Functionalizing Slag Wool Fbers with Photocatalytic Activity by Anatase TiO2 and CTAB Modification, Ceram. Int., 44: 5842 (2018).
[22] Siddiquey I.A., Furusawa T., Sato M., Suzuki N., Microwave-Assisted Silica Coating and Photocatalytic Activities of ZnO nanoparticles, Mater. Res. Bull., 43: 3416 (2008).
[23] Rahim S., Sasani Ghamsari M., Radiman S., Surface Modification of Titanium Oxide Nanocrystals with PEG, Sci. Iran., 19: 948 (2012).
[24] Feng X., Zhang S., Lou X., Controlling Silica Coating thickness on TiO2 Nanoparticles for Effective Photodynamic Therapy, Colloids Surfaces B Biointerfaces, 107: 220 (2013).
[25] Hangxun X., Zeiger B.W., Suslick K.S., Sonochemical Synthesis of Nanomaterials, Chem. Soc. Rev., 42: 2555 (2013).
[26] Amiri M., Pardakhti A., Ahmadi-Zeidabadi M., Akbari A., Salavati-Niasari M., Magnetic nickel Ferrite Nanoparticles: Green Synthesis by Urtica and Therapeutic Effect of Frequency Magnetic Field on Creating Cytotoxic Response in Neural Cell Lines, Colloids Surfaces B Biointerfaces, 172: 244 (2018).
[27] Sadowski D., Steer S.J., Clothier R.H., Balls M., An Improved MIT Assay, J. Immunol. Methods, 157: 203 (1993).
[29] Kubacka A., Suárez Diez M., Rojo D., Bargiela R., Ciordia S., Zapico I., Albar J.P., Barbas C.,
Understanding the Antimicrobial Mechanism of TiO2-Based Nanocomposite Films in a Pathogenic Bacterium, Sci. Rep., 4: (2014).
[30] Frisch G.E.S.M.J., Trucks G.W., Schlegel H.B., Robb B.M.M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson H.P.H.G.A., Nakatsuji H., Caricato M., Li X., Izmaylov M.H.A.F., Bloino J., Zheng G., Sonnenberg J.L., Ehara T.N.M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Honda J.Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta E.B.J.E., Ogliaro F., Bearpark M., Heyd J.J., Kudin J.N.K.N., Staroverov V.N., Kobayashi R., Raghavachari J.T.K., Rendell A., Burant J.C.,
Iyengar S.S., Cossi J.B.C.M., Rega N., Millam J.M., Klene M., Knox J.E., Bakken R.E.S.V., Adamo C., Jaramillo J., Gomperts R., Yazyev J.W.O.O., Austin A.J., Cammi R., Pomelli C., Martin G.A.V.R.L., Morokuma K., Zakrzewski V.G., Salvador A.D.D.P., Dannenberg J.J., Dapprich S., Farkas J.C.O., Foresman J.B., Ortiz J.V., Fox D.J., (n.d.).
[31] Niculae G., Lacatusu I., Bors A., Stan R., Photostability Enhancement by Encapsulation of α-Tocopherol Into Lipid-Based Nanoparticles Loaded with a UV Filter, Comptes Rendus. Chim., 17: 1028 (2014).
[32] Siddiquey I.A., Furusawa T., Sato M., Bahadur N. M., Mahbubul Alam M., Suzuki N., Sonochemical Synthesis, Photocatalytic Activity and Optical Properties of Silica Coated ZnO Nanoparticles, Ultrason. Sonochem. 19: 750 (2012).
[33] Furusawa T., Honda K., Ukaji E., Sato M., Suzuki N., Multiwall Carbon Nanotube and TiO2 Sol Assembly, Mater. Res. Bull., 43:946 (2008).
[34] Mahbubul I. M., Elcioglu E. B., Saidur R., Amalina M.A., Optimization of Ultrasonication Period for Better Dispersion and Stability of TiO2–water Nanofluid, Ultrason. Sonochem., 37, 360 (2017).
[35] Zhang J., Yan S., Fu L., Wang F., Yuan M., Luo G., Xu Q., Wang X., Li C., Cuihua Xuebao/Chinese Photocatalytic degradation of rhodamine B on anatase, rutile, and brookite TiO2, J. Catal. 32, 983 (2011).
[36] X. Hangxun, B. W. Zeiger, and K. S. Suslick, Sonochemical Synthesis of Nanomaterials, Chem. Soc. Rev. 42, 2555 (2013).
[37] Mahbubul I. M., Elcioglu E.B., Saidur R., Amalina M.A., Optimization of Ultrasonication Period for Better Dispersion and Stability of TiO2–Water Nanofluid, Ultrason. Sonochem. 37: 360 (2017).
[38] Zhang J., Yan S., Fu L., Wang F., Yuan M., Luo G., Xu Q., Wang X., Li C., Photocatalytic Degradation of Rhodamine B on Anatase, Rutile, and Brookite TiO2, Cuihua Xuebao/Chinese J. Catal. 32, 983 (2011).
[39] Hedayati K., Ebrahimi Z., Ghanbari D, Preparation of Hard Magnetic BaFe12O19TiO2 Nanocomposites: Applicable for Bhoto-Degradation of Toxic Pollutants, Journal of Materials Science: Materials in Electronics, 28(18): 13956-13969 (2017).