Applying Neural Network Model for Adsorption Methyl Paraben (MP) Dye Using Ricinus Communis-capeed Fe3O4 NPs Synthesized from Aqueous Solution

Document Type : Research Article

Authors

Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, I.R. IRAN

Abstract

The applicability of the synthesized Ricinus Communis-capeed Fe3O4NPs as a novel adsorbent for eliminating Methyl Paraben (MP) from aqueous media was investigated. Various techniques including Brunauer Emmett Teller theory (BET), Fourier Transform InfraRed (FT-IR) spectroscopy, X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray (EDX) were used to characterize this novel adsorbent. The maximum adsorption efficiency of (MP) dye onto Ricinus Communis-capeed Fe3O4 NPs was 98.6% at an optimum pH value of 7.0, the adsorbent dosage of 0.01 g, (MP) dye concentration of 15 mg/L, and contact time of 12 min were considered as the ideal values for (MP) dye. The adsorption data fitted well with the Langmuir isotherm model with a correlation coefficient (R2 > 0.97), whereas the adsorption kinetics followed the pseudo-second-order kinetics. The use of an artificial neural network model in predicting data with the Levenberg–Marquardt algorithm, purlin, or a linear transfer function at the output layer, and training was helpful. ANN model as a tool (mean square error) MSEANN = 0.0034, MSEFL = 0.023, and MSEANFIS = 0.0020 for removal of the (MP) dye onto Ricinus Communis-capeed Fe3O4 NPs synthesis. Thermodynamic parameters of free energy (ΔG0), enthalpy (ΔH0), and entropy (ΔS0) of adsorption were determined using isotherms. ∆H0=59.58 kJ/mol, ∆G0= -2.8324 kJ/mol and ∆S0=221.15 kJ/mol. K. The value of (ΔGo, ΔHo, and ΔSo) confirmed the sorption process was endothermic reflecting the affinity of Ricinus Communis-capeed Fe3O4NPs for removing (MP) dye onto Ricinus Communis-capeed Fe3O4NPs process requires heat. The maximum monolayer capacity (qmax) was observed to be 195.0 mg/g for (MP) dye at desired conditions.

Keywords

Main Subjects


[1] Zubair Z., Ihsanullah I., Jarrah N., Khalid A., Manzar M.S., Kazeem T.S., Al- Harthi  M.A., Starch-NiFe-Layered Double Hydroxide Composites: Efficient Removal of Methyl Orange from Aqueous Phase, J. Molecular Liquids., 249: 254-264 (2018).
[2] Ihsanullah I., Jamal A., Ilyas M., Zubair M., Khan G., Atieh M.A., Bioremediation of Dyes: Current status and Prospects, J. Water. Process. Engineering, 38: 101680 (2020).
[3] Jawad A.H., Abdulhameed A.S., Mastuli M.S., Acid-Factionalized Biomass Material for Methylene Blue Dye Removal: A Comprehensive Adsorption and Mechanism Study, J. Taibah, Univ. Sci., 14(1): 305–313 (2020).
[4] Jawad A.H., Abdulhameed A.S., Statistical Modeling of Methylene Blue Dye Adsorption by High Surface Area Mesoporous Activated Carbon from Bamboo Chip Using KOH-Assisted Thermal Activation, Energ. Ecol. Environ., 5(5): 1-18 (2020).
[5] Geaneth Pertunia Mashile G., Azile Nqombolo A.M., Mogolodi Dimpe K., Philiswa N., Nomngongo N., Recyclable Magnetic Waste Tyre Activated Carbon-Chitosan Composite as an Effective Adsorbent Rapid and Simultaneous Removal of Methylparaben and Propylparaben from Aqueous Solution and Wastewater, J. Water. Process Engineering., 33: 101011 (2020).
[6] Pargari M., Marahel F., Mombini Godajdar B., Ultrasonic Assisted Adsorption of Propyl Paraben on Uultrasonically Synthesized TiO2 Nano Particles Loaded on Activated Carbon: Optimization, Kinetic and Equilibrium Studies, Desal. Water Treat., 212: 164-172 (2021). 
[7] Md Yusoff M., Yahaya N., Md Saleh N., Raoov M., A Study on the Removal of Propyl, Butyl, and Benzyl Parabens via Newly Synthesised Ionic Liquid Loaded Magnetically Confined Polymeric Mesoporous Adsorbent, RSC. Adv. 8: 25617–25635 (2018).
[8] An J., Xia Ch., He J., Feng H., Oxidation of Propyl Paraben by Ferrate (VI): Kinetics, Products, and Toxicity Assessment, J. Environ. Sci. Health. A., 53(10): 873-882 (2018).
[9] Habbal S., Haddou B., Cansellier J., Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System, Tenside Surfactants Detergents., 56(2): 112-118 (2019).
[10] Yegane Badi M., Fallah S.,  Rezaei Nia S.,  Esrafili A., Monitoring of Para-Hydroxy Benzoic Acid Esters (Antimicrobial and Preservative) in Tehran Wastewater Treatment Plants and Performance Evaluation of Various Wastewater Treatment Method in the Removal of These Compounds, J. Environ. Health. Eng., 3(4): 259-269 (2016).
 
[11] Mohammadi F., Esrafili A., Sobhi H.R., Behbahani M., Kermani M., Asgari E., Rostami Fasih Z., Evaluation of Adsorption And Removal of Methylparaben from Aqueous Solutions Using Amino-Functionalized Magnetic Nanoparticles as an Efficient Adsorbent: Optimization and Modeling by Response Surface Methodology (RSM), Desal. Water Treat., 103: 248–260 (2018).
[12] Jawad A.H., Firdaus Hum N.N.M., Abdulhameed A.S., Mohd Ishak M.Z., Mesoporous Activated Carbon from Grass Waste via H3PO4-Activation for Methylene Blue Dye Removal: Modelling, Optimisation, and Mechanism Study, Int. J. Environ. Anal. Chem., 99: 1-20 (2020).
[13] Jawad A.H., Abdulhameed A.S., Surip S.V., Sabar S., Adsorptive Performance of Carbon Modified Chitosan Biopolymer for Cationic Dye Removal: Kinetic, Isotherm, Thermodynamic, and Mechanism Study, Int. J. Environ. Anal. Chem., 99_ 1-18 (2020). 
[14] Abdulhameed A.S., Firdaus Hum N.N.M., Rangabhashiyam S., Jawad A.H., Wilson L.D.,  Yaseen Z.M., Al-Kahtani A.A., ALOthman Z.A., Statistical Modeling and Mechanistic Pathway for Methylene Blue Dye Removal by High Surface Area
and Mesoporous Grass-Based Activated Carbon Using K2CO3 Activator, J. Environ. Chem. Eng., 9: 105530 (2021). 
[15] Jawad A.H., Abdulhameed A.S., Statistical Modeling of Methylene Blue Dye Adsorption by High Surface Area Mesoporous Activated Carbon From Bamboo Chip Using KOH-Assisted Thermal Activation, Energ. Ecol. Environ., (2020).
[16] Ahmadi S.H., Davar P., Manbohi A., Adsorptive Removal of Reactive Orange 122 from Aqueous Solutions by Ionic Liquid Coated Fe3O4 Magnetic Nanoparticles as an Efficient Adsorbent, Iran. J. Chem. Chem. Eng (IJCCE)., 35: 63-73 (2016).
[17] Reghioua A., Barkat D., Jawad A.H., Abdulhameed A.S., Al-Kahtani A.A., ALOthman Z.A., Parametric Optimization by Box–Behnken Design for Synthesis of Magnetic Chitosan-Benzil/ZnO/Fe3O4 Nanocomposite and Textile Dye Removal,  J. Environ. Chem. Eng., 9: 105166 (2021). 
[18] Reghioua A., Barkat D., Jawad A.H., Abdulhameed A.S., Khan M.R., Synthesis of Schiff’s base Magnetic Crosslinked Chitosan-Glyoxal/ZnO/Fe3O4 Nanoparticles for Enhanced Adsorption of Organic Dye: Modeling and Mechanism Study, Sustaina. Chem. Pharmac., 20: 100379 (2021). 
[19] Chen H.W., Chiou C.S., Wu Y.P., Chang C.H., Lai Y.H., Magnetic Nanoadsorbents Derived from Magnetite and Graphene Oxide for Simultaneous Adsorption of Nickel Ion, Methylparaben, and Reactive Black 5, Desal. Water Treat., 224: 168-177 (2021). 
[20] Husein D.Z., Facile One-Pot Synthesis of Porous N-Doped Graphene Based NiO Composite for Parabens Removal from Wastewater and Its Reusability, Desal. Water Treat., 166: 211-221 (2021). 
[21] Manohar R., Shrivastava V.S., Adsorption removal of Carcinogenic Acid Violet19 Dye from Aqueous Solution by Polyaniline-Fe2O3 Magnetic Nano-Composite, J. Mater. Environ. Sci., 6: 11-21 (2015).
[22] Mandel K., Hutter F., Gellermann C., Sextl G., Synthesis and Stabilisation of Superparamagnetic Iron Oxide Nanoparticle Dispersions, J. Colloids and Surfaces A: Physicochemical and Engineering Aspects., 390: 173-178 (2011).
[23] Kiani K., Bagheri S., Karachi N., Alipanahpour Dil E., Adsorption of Purpurin Dye from Industrial Wastewater Using Mn-Doped Fe2O4 Nanoparticles Loaded on Activated Carbon, J. Desal. Water. Treat., 60: 1-8 (2019).
[25] Jamshidi B., Tahmasebi Birgani Y., Jorfi S., Takdastan A., Dehvari M., Jamshidi B., Adsorption of Humic Acid from Aqueous Solutions onto Shellfish Ash: Kinetic and Isotherm Studies and Artificial Neural Network Modeling, J. Environ. Health Engine. Manage., 7(4): 219-228 (2020).  
[26] Marahel F., Mombini Godajdar B., Niknam L., Faridnia M., Pournamdari E., Mohammad Doost S., Ultrasonic Assisted Adsorption of Methylene Blue Dye and Neural Network Model for Adsorption of Methylene Blue Dye by Synthesized Mn-Doped PbS Nanoparticles. Int. J. Environ. Anal. Chem., 101(5): 1-22 (2021).
[27] Dehghanpoor Frashah A., Hashemian S., Tamadon F., Ag Doped Hydroxyapatite Nano Particles for Removal of Methyl Red Azo Dye from Aqueous Solutions Kinetic and Thermodynamic Studies, Eur. J. Anal. Chem., 15: 32-44 (2020).
[28] Lu A.H., Schuth F., Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angewandte Chemie International Edition., 46: 1222-1244 (2007).
[29] Bagheri S., Aghaei H., Ghaedi M., Asfaram A., Monajemi M., Bazrafshan A.A., Synthesis of Nanocomposites of Iron Oxide/Gold (Fe3O4/Au) Loaded on Activated Carbon and their Application in Water Treatment by Using Sonochemistry: Optimization Study, Ultrasonics – Sonochemistry., 41: 279–287 (2018).
[30] Naushad M., Gaurav Sharma Zeid G., Alothman A., Photodegradation of Toxic Dye Using Gum Arabic-Crosslinkedpoly (acrylamide)/Ni(OH)2/FeOOH Nanocomposites Hydrogel, J. Clean. Production., 241: 112863 (2019).
[31]  Abd Malek N.N., Jawad A.H., Abdulhameed A.S., Ismail K., Hameed B.H., New Magnetic Schiff's Base-chitosan-glyoxal/fly ash/Fe3O4 Biocomposite for the Removal of Anionic Azo Dye: An Optimized Process, Int. J. Biolog. Macromolecules., 146: 530–539 (2020).
[33] Bouroumand Sh., Marahel F., Khazali F., Removal of Yellow HE4G dye from Aqueous Solutions Using synthesized Mn-doped PbS (PbS:Mn) Nanoparticles, Desal. Water Treat., 223: 388-392 (2021).
[34] Rashidi Nodeh H., Sereshti H., Ataolahi S., Toloutehrani A., Talesh Ramezani A., Activated Carbon Derived From Pistachio Hull Biomass for the Effective Removal of Parabens from Aqueous Solutions: Isotherms, Kinetics, and Free Energy Studies, Desal. Water Treat., 201: 155–164 (2020).
[35] Kaboudin B., Torabi Momen M., Kazemi F., Ray P., Novel ß-Cyclodextrin Functionalized Core-Shell Fe3O4 Magnetic Nanoparticles for the Removal of Toxic Metals from Water, Anal. Chem., (2021).
[36] Maghami F., Abrishamkar M., Mombeni Goodajdar B., Hossieni M., Simultaneous Adsorption of Methylparaben and Propylparaben Dyes from Aqueous Solution Using Synthesized Albizia lebbeck Leaves-Capped Silver Nanoparticles, Desal. Water Treat., 223: 388-392 (2021).
[37] Arora C., Soni S., Sahu S., Mittal J., Kumar P., Bajpai P.K., Iron Based Metal Organic Framework for
Efficient Removal of Methylene Blue Dye from Industrial Waste, J. Molecular Liquids., 284: 373-352 (2019).
[38] Yang Y., Xie Y., Pang L., Li M., Song X., Wen J., Zhao H., Preparation of Reduced Graphene Oxide/Poly(Acrylamide) Nanocomposite and Its Adsorption of Pb2+ and Methylene Blue, Langmuir., 29: 10727-10736 (2013).
[39] Mahini R., Esmaeili H., Foroutan R., Adsorption of Methyl Violet From Aqueous Solution Using Brown Algae Padina Sanctae-Crucis, Turk. J. Biochem., 24: 1-12 (2018). 
[40] Haghdoost G.H., Removal of Reactive Red 120 from Aqueous Solutions Using Albizia lebbeck Fruit (Pod) Partical as a Low Cost Adsorbent, J. Phys. Theore. Chem., 15(3,4): 141-148 (2019).
[41] Absalan G., Bananejad A., Ghasemi M., Removal of Alizarin Red and Purpurin from Aqueous Solutions Using Fe3O4 Magnetic Nanoparticles, Anal. Bioanal. Chem. Res., 4: 65-77 (2017).
[42] Fu J., Chen Z., Wang M., Liu S., Zhang J., Han R., Xu Q., Adsorption Of Methylene Blue by a High-Efficiency Adsorbent (Poly Dopamine Micro Spheres): Kinetics, Isotherm, Thermodynamics and Mechanism Analysis, Chem. Eng. J., 259: 53-61 (2015).
[43] Hubbe M., Azizian S., Douven S., Implications of Apparent Pseudo-Secound-Order Adsorption Kinetics onto Cellulosic Materials: A Review, Bio Resources., 14(3): 7582-7626 (2019).
[44] Toor M., Jin B., Adsorption Characteristics, Isotherm, Kinetics, and Diffusion of Modified Natural Bentonite for Removing Diazo Dye, Chem. Eng. J., 187: 79-88 (2012).
[45] Bouaziz F., Koubaa M., Kallel F., Ghorbel R.E., Chaabouni S.E., Adsorptive Removal of Malachite Green from Aqueous Solutions by Almond Gum: Kinetic Study and Equilibrium Isotherms, Int. J. Biolog. Macromolecules., 105: 56-65 (2017). 
[46] Banerjee S., Sharma G.C., Gautam R.K., Chatto Padhyaya M.C., Upadhyay S.N., Sharma Y.C., Removal of Malachite Green, a Hazardous Dye from Aqueous Solutions Using Avena Sativa (oat) Hull as a Potential Adsorbent, J. Mol. Liquids., 213: 162-172 (2016).  
[47] Atheba P., Guadi N., Allou B., Drogui P., Trokourey A., Adsorption Kinetics and Thermodynamics Study of Butylparaben on Activated Carbon Coconut Based, J. Encapsul. Adsorpt. Sci., 8: 39-57 (2018).
[48] Mousavi E., Geramizadegan A., Adsorption of Benzyl Paraben Dye from Aqueous Solutions Using synthesized Mn-doped PbS (PbS:Mn) nanoparticles, J. Phys. Theore. Chem., 17(3,4): 123-143 (2020).  
[49] Chin Y.P., Mohamad S., Bin Abas M.R., Removal of Parabens from Aqueous Solution Using ß-cyclodextrin Cross-Linked Polymer, Int. J. Mol. Sci., 11: 3459-3471 (2010).