Removal of Methyl Orange from Aqueous Solution Using Zeolitic Imidazolate Framework-11: Adsorption Isotherms, Kinetics and Error Analysis

Document Type : Research Article


1 URMPE, M’Hamed Bougara University, Boumerdes, 35000, ALGERIA

2 Faculty of sciences, Department of chemistry, M’Hamed Bougara University, Boumerdes, 35000, ALGERIA


Dyes, which are increasingly harmful to human health and ecology, are an environmental concern and their removal from wastewater is extremely required. It is also important for researchers to find relevant techniques to process these types of pollutants. This study examines the use of the synthesized imidazolate zeolite frameworks-11 (ZIF-11) by stirring method for
the Methyl Orange (MO) dye removal from an aqueous solution. Scanning electron microscopy, thermogravimetry, X-ray diffraction, and Fourier transform infrared spectroscopy, were used for the analysis of ZIF-11 particles, which exhibited highly porous, irregular, and heterogeneous shapes and variable sizes. The MO removal was assessed by batch adsorption with ZIF-11 particles as adsorbent, whose efficiency was achieved at pH=8, stirring speed of 600 rpm, for a contact time of 40min, and a dosage of 800mg/L of MO solution. The thermodynamic and kinetic analysis of the MO adsorption process was achieved successfully with the pseudo-second-order kinetic model as well as Langmuir and Temkin isotherms, indicating the feasibility and spontaneity of the uniform distribution of MO molecules on the active sites of ZIF-11 particles. The calculated maximum adsorption capacity of MO on ZIF-11 particles was 178.57 mg/g, which is indicative of the potential adsorptive properties of the synthesized ZIF-11 for MO dyes.


Main Subjects

[1] Park K.S., Ni Z., Cote A.P., Choi J.Y., Huang R., Uribe-Romo F.J., Chae H.K., O’keeffe M., Yaghi O.M, Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks, PNAC., 103(27): 10186–10191 (2006).
[2] Chen B., Yang Z., Zhu Y., Xia Y., Zeolitic Imidazolate Framework Materials: Recent Progress in Synthesis and Applications J. Mater. Chem. A, 2: 16811-16831 (2014). 
[3] Bhattacharjee S., Jang M-S., Kwon H-J., Ahn W-S., Zeolitic Imidazolate Frameworks: Synthesis, Functionalization, and Catalytic/Adsorption Applications. Catal. Surv. Jpn., 18: 101–127 (2014). 
[5] Miensah E.D., Muhammad Khan M., Chen J.Y., Mei Zhang X, Wang P., Zhang Z.X., Jiao Y., Liu Y., Yang Y., Zeolitic Imidazolate Frameworks and their Derived Materials for Sequestration of Radionuclides in the Environment: A Review, Crit. Rev. Environ. Sci. Technol., 50(18): 1874-1934 (2020).
[6] Sutrisna P. D., Savitri E., Himma N. F., Prasetya N.,  Wenten I.G., Current Perspectives and Mini Review on Zeolitic Imidazolate Framework-8 (ZIF-8) Membranes on Organic Substrates, IOP Conf, Ser.: Mater. Sci. Eng., 703: 012045(2019).
[7] Zhang J., Tan Y., Song WJ., Zeolitic Imidazolate Frameworks for Use In Electrochemical and Optical Chemical Sensing and Biosensing: A Review, Microchim. Acta, 187: 234 (2020).
[8] Hajializadeh A., Ansari M., Foroughi M., Jahani S., Kazemipour M., Zeolite Imidazolate Framework Nanocrystals Electrodeposited on Stainless Steel Fiber for Determination of Polycyclic Aromatic Hydrocarbons, Iran. J. Chem. Chem. Eng. (IJCCE), 41(2): 368-372 (2022).
[9] Pimentel B.R., Jue M.L., Zhou E.K., Ross J. Verploegh, Johannes Leisen, David S. Sholl, and Ryan P. Lively, Sorption and Transport of Vapors in ZIF-11: Adsorption, Diffusion, and Linker Flexibility, J. of Phys. Chem. C, 123(20):12862-12870 (2019).
[10] Gong Y., Tang Y., Mao Z., Wu X., Liu Q., Hu S., Wang X., Metal-Organic Framework Derived Nanoporous Carbons with Highly Selective Adsorption and Separation of Xenon, J. of Mater. Chem. A, 6(28): 13696–13704 (2018).
[11] E.M. Forman, A. Baniani, L. Fan, K.J. Ziegler, E. Zhou, F. Zhang, R.P. Lively, S. Vasenkov, Ethylene Diffusion in Crystals of Zeolitic Imidazole Framework-11 Embedded in Polymers to Form Mixed-Matrix Membranes, Microporous Mesoporous Mater., 274: 163-170 (2018).  
[13] Katheresan V., Kansedo J., Lau S.Y., Efficiency of Various Recent Wastewater Dye Removal Methods: A Review, J. of Environ. Chem. Eng., 6(4): 4676-4697 (2018).
[16] Tajizadegan H., Torabi O., Heidary A., Golabgir M.H., Jamshidi A., Study of Methyl Orange Adsorption Properties on ZnO–Al2O3 Nanocomposite Adsorbent Particles, Desalination and Water Treatment, 57(26): 12324-12334 (2016).
[17] Du X-D., Wang C-C., Liu J-G., Zhao X-D., Zhong J, Li Y-X., Li J., Wang P., Extensive and Selective Adsorption of ZIF-67 Towards Organic Dyes: Performance and Mechanism, J. Colloid Interface Sci., 506: 437–41 (2017).
[18] Malviya A., Jaspal D., Sharma P., Dubey A., Isothermal Mathematical Modeling for Decolorizing Water - A Comparative Approach., Sustain. Environ. Res., 25: 53–58 (2015).
[19] Sabnis R.W., Handbook of Acid-Base Indicators, Taylor & Francis Group, LLC., 228–229 (2008).
[21] Z. Aksu, Application of Biosorption for the Removal of Organic Pollutants: A Review, Process Biochem. 40: 997–1026 (2005).
[22] León G., García F., Miguel B., Bayo J., Equilibrium, Kinetic and Thermodynamic Studies of Methyl Orange Removal by Adsorption onto Granular Activated Carbon, Desalination and Water Treat., 57(36): 17104-17117 (2016).
[23] Pal J., Deb M.K., Deshmukh D.K., Verma D., Removal of Methyl Orange by Activated Carbon Modified by Silver Nanoparticles, Appl. Water Sci., 3: 367–374 (2013).
[24] Mokhtari P., Ghaedi M., Dashtian K., Rahimi M. R., Purkait M. K., Removal of Methyl Orange by Copper Sulfide Nanoparticles Loaded Activated Carbon: Kinetic And Isotherm Investigation, J. of Mol. Liq., 219: 299-305 (2016). 
[25] Wu Y., Su M., Chen J., Xu Z., Tang J., Chang X., Chen, Superior Adsorption of Methyl Orange by h-MoS2 microspheres: Isotherm, Kinetics, and Thermodynamic Studies, Dye. and Pigm., 170: 107591 (2019).
[26] Yang Q., Ren S., Zhao Q., Lu R., Hang C., Chen Z., Zheng H., Selective Separation of Methyl Orange From Water Using Magnetic ZIF-67 Composites, Chem. Eng. J., 333:49–57 (2018).
[27] Li Y., Zhou K., He M., Yao J., Synthesis of ZIF-8 and ZIF-67 Using Mixed-Base and their Dye Adsorption, Microporous and Mesoporous Mater., 234: 287-292 (2016).
[29] Forman E.M., Pimentel B.R., Ziegler K.J., Lively R.P., Vasenkov S., Microscopic Diffusion of Pure and Mixed Methane and Carbon Dioxide in ZIF-11 by High Field Diffusion NMR, Microporous and Mesoporous Materials, 248: 158–163 (2017).
[30] He M., Yao J., Liu Q., Zhong Z., Wang H., Toluene-Assisted Synthesis of RHO-Type Zeolitic Imidazolate Frameworks: Synthesis And Formation Mechanism of ZIF-11 and ZIF-12, Dalton Trans., 42: 16608-16613 (2013).
[31] Nimibofa Ayawei, Augustus Newton Ebelegi, Donbebe Wankasi, Modelling and Interpretation of Adsorption Isotherms, J. of Chem., 2017, Article ID 3039817, 11 (2017).
[33] Feng Y., Li Y., Xu M., Liu S., Yao J., Fast Adsorption of Methyl Blue on Zeolitic Imidazolate Framework-8 and Its Adsorption Mechanism, RSC Adv., 6: 109608-109612 (2016).
[34] He M., Yao J., Liu Q., Zhong Z., Wang H., Toluene-Assisted Synthesis of RHO-Type Zeolitic Imidazolate Frameworks: Synthesis and Formation Mechanism of ZIF-11 and ZIF-12, Dalton Trans, 42:16608-16613 (2013).
[35] Sanchez-Lainez J., Zornoza B., Mayoral A., Berenguer-Murcia Á., CazorlaAmorós D., Tellez C., Coronas J., Beyond the H2/CO2 Upper Bound: One-Step Crystallization and Separation of Nano-Sized ZIF-11 by Centrifugation and its Application in Mixed Matrix Membranes, J. Mater. Chem. A 7., 6549–6556 (2015).
[36] Kim M.R., Kim T., Rye H.S., Lee W., Kim H. G., Kim M.I., Lim C.S., Zeolitic Imidazolate Framework Promoters in One-Pot Epoxy–Amine Reaction, J. Mater Sci., 55:2068–2076 (2020).
[38] He M., Yao J., Li L., Wang K., Chen F., Synthesis of Zeolitic Imidazolate Framework-7 in a Water/Ethanol Mixture and its Ethanol-Induced Reversible Phase Transition, Chem. Plus. Chem., 78: 1222–1225 (2013).
[40] Yumru A.B., Boroglu M.S., Boz I., ZIF-11/Matrimid® Mixed Matrix Membranes for Efficient CO2, CH4 and H2 Separations, Greenhouse Gas Sci. Technol., 8: 529-541(2018).
[41] Lin Y.F., Huang K.-W., Ko B.-T., Andrew Lin K.-Y., Bifunctional ZIF-78 Heterogeneous Catalyst with Dual Lewis Acidic and Basic Sites for Carbon Dioxide Fixation Via Cyclic Carbonate Synthesis, J. of CO2 Utilization, 22: 178-183 (2017). 
[42] Xie X., Huang X., Lin W., Chen Y., Lang X., Wang Y., Gao L., Zhu H., and Chen J., Selective Adsorption of Cationic Dyes for Stable Metal–Organic Framework ZJU-48ACS Omega, 5(23): 13595-13600 (2020).
[43] Shah S.S., Sharma T., Dar B.A., Bamezai R.K., Adsorptive Removal of Methyl Orange Dye From Aqueous Solution Using Populous Leaves: Insights from Kinetics, Thermodynamics and Computational Studies, Environ. Chem. and Ecotoxicol., 3: 172-181 (2021).
[44] Zhao P., Zhang R., Wang J., Adsorption of Methyl Orange from Aqueous Solution Using Chitosan/ Diatomite Composite, Water Sci. Technol.,75(7): 1633–1642 (2017).
[45] Haitham K., Razak S., Nawi M.A., Kinetics and Isotherm Studies of Methyl Orange Adsorption by a Highly Recyclable Immobilized Polyaniline on a Glass Plate, Arabian J. of Chem., 12(7): 1595-1606 (2019).
[46] Adeyemo A.A., Adeoye I.O., Bello O.S., Adsorption of Dyes Using Different Types of Clay: A Review, Appl. Water Sci., 7: 543–568 (2017).
[48] Ma J., Jia Y., Jing Y., Yao Y., Sun J., Kinetics and Thermodynamics of Methylene Blue Adsorption by Cobalt-Hectorite Composite, Dyes and Pigm., 93: 1441-1446 (2012).
[49] Pathania D., Sharma S., Singh P., Removal of Methylene Blue by Adsorption onto Activated Carbon Developed from Ficus Carica Bast, Arabian J. of Chem., 10(1): S1445–S1451 (2013).
[50] Saha P., Chowdhury Sh., Insight into Adsorption Thermodynamics. in: Mizutani Tadashi (Eds.), Thermodynamics Chap., 16: 349-364 (2011).
[51] Ho Y., McKay G., Pseudo-Second Order Model for Sorption Processes, Process Biochem., 34: 451–465 (1999).
[53] Hall K. R., Eagleton L. C., Acrivos A., Vermeulen T., Pore and Solid Diffusion Kinetics in Fixed Bed Adsorption under Constant Pattern Conditions, Ind. & Eng. Chem. Fundam.,  5(2): 212-223 (1966).
[54] Hobson J.P., Physical Adsorption Isotherms Extending from Ultra-High Vacuum to Vapor Pressure, J. Phys. Chem. 73: 2720– 2727 (1969).
[55] Yang Q., Ren S., Zhao Q., Lu R., Hang C., Chen Z., Zheng H., Selective Separation of Methyl Orange from Water Using Magnetic ZIF-67 Composites, Chem. Eng. J., 333:49–57 (2018).
[56] Shi-Wen Lv, Jing-Min L., Hui Ma, Zhi-Hao W., Chun-Yang Li, Ning Z., Shuo W., Simultaneous Adsorption of Methyl Orange and Methylene Blue from Aqueous Solution Using Amino Functionalized Zr-based MOFs, Microporous and Mesoporous Mater., 282: 179-187 (2019).
[57] Yogesh Kumar K., Archana S., Vinuth Raj T.N., Prasana B.P., Raghu M.S., Muralidhara H.B., Superb Adsorption Capacity of Hydrothermally Synthesized Copper Oxide and Nickel Oxide Nanoflakes Towards Anionic and Cationic Dyes. J. of Sci.: Adv. Mate. and Devices. 2: 183-191 (2017).
[58] Zhai L., Bai Z., Zhu Y., Wang B., Luo W., Fabrication of Chitosan Microspheres for Efficient Adsorption of Methyl Orange, Chinese J. of Chem. Eng., 26(3):  657-666 (2018).
[59] Darwish A.A.A., Rashad M., Hatem A. AL-Aoh., Methyl Orange Adsorption Comparison on Nanoparticles: Isotherm, Kinetics, and Thermodynamic Studies. Dye and Pigm., 160: 563–571 (2019).
[60] WuY., Su M., Chen J., Xu Z., Tang J., Chang X., Chen D., Superior Adsorption of Methyl Orange by h-MoS2 Microspheres: Isotherm, Kinetics, and Thermodynamic Studies, Dye and Pigm., 170: 107591 (2019).