The Evaluation of the Anti-Histone Deacetylase, Antibacterial, Antioxidant and Cytotoxic Activities of Synthetic N,N´-ethylenebis (α methylsalicylideneiminate) Schiff Base Derivatives

Document Type : Research Article

Authors

1 Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, I.R. IRAN

2 Department of Biology, Faculty of Science, NourDanesh Institute of Higher Education, Mymeh, Isfahan, I.R. IRAN

3 Department of Medical Biotechnology, Fasa University of Medical Science, Fasa, I.R. IRAN

4 Cellular and Molecular Research Center, Gerash University of Medical Science, Gerash, I.R. IRAN

Abstract

Recently, Schiff base complexes as synthetic antioxidants are widely used instead of natural antioxidants because they are effective and cheaper. In this study, a series of α,ά-Me2-salen, (N,N´-ethylenebis(α methylsalicylideneiminate)) Schiff base derivatives have been investigated for their anti-histone deacetylase (HDAC), anticancer, antibacterial, and antioxidant activities. For anti-HDAC studies, AUTODOCK 4.1 and Molecular Dynamics (MD) simulations have been conducted against these combinations. Cytotoxic test, the ferric reducing ability of plasma (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) ABTS assays and Agar diffusion method have been applied to investigate anticancer, antioxidant and antibacterial activities, respectively. Based on the results, the best docking was obtained for α,ά-Me2-salen against HDAC. Also, MD calculation results demonstrated that the α,ά-Me2-salen is a more effective compound for HDAC inhibiting than SAHA as a known enzyme inhibitor. However, α,ά-Me2-salen, and its derivatives didn't display antibacterial activity against any of the microorganisms. Cytotoxic activity analysis toward MCF 7 cell line was apparent that α,ά-Me2-salen and its Ni (II), Co (II), and Cu (II) derivatives manifested high cytotoxic activity with IC50 5, 2, 2, and 3 µg/mL, respectively. The antioxidant results revealed excellent radical scavenging activities of all these compounds against DPPH, ABTS, and FRAP radicals. The antioxidant activity by DPPH, showed Mn(II) complex (IC50 = 0.13 ± 0.50 mg/mL) was the most active. While, α,ά-Me2-salen (IC50 =0.05±0.003 mg/mL) and its Ni(II) derivative (IC50 =0.049 mg/mL) exhibited the highest ABTS scavenging activity. According to the results, all compounds show acceptable anticancer and antioxidant activity and can be used as drug candidates after further investigations.

Keywords

Main Subjects


[1] Abdel Aziz AA., Elbadawy HA., Spectral, Electrochemical, Thermal, DNA Binding Ability, Antioxidant and Antibacterial Studies of Novel Ru(III) Schiff Base Complexes, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 124:404-415 (2014).
[2] Sathyadevi P., Krishnamoorthy P., Butorac R.R., Cowley A.H., Dharmaraj N., Synthesis of Novel Heterobimetallic Copper(I) Hydrazone Schiff Base Complexes: A Comparative Study on the Effect of Heterocyclic Hydrazides towards Interaction with DNA/Protein, Free Radical Scavenging and Cytotoxicity, Metallomics, 4(5):498-511(2014).
[3] Meftah S., Yazdanparast., Razieh: Synthesis and Antioxidant Activities of [5-fluoro N, N'-bis (salicylidene) ethylenediamine]  and [3, 5-fluoro N, N'-bis (salicylidene) ethylenediamine] Manganese (III) Complexes, Iran. J. Chem. Chem. Eng (IJCCE)., 32(1): 67-75 (2013).
[4] Lobo V., Patil A., Phatak A., Chandra N., Free Radicals, Antioxidants and Functional foods: Impact on Human Health. Pharmacogn. Rev., 4(8): 118-126 (2010).
[5] Wojtunik-Kulesza K.A., Oniszczuk A., Oniszczuk T., Waksmundzka-Hajnos M., The Influence of Common Free Radicals and Antioxidants on Development of Alzheimer's Disease, Biomed. Pharmacother., 78:39-49 (2016).
[6] Valko M., Jomova K., Rhodes C.J., Kuca K., Musilek K., Redox- and Non-Redox-Metal-Induced Formation of Free Radicals and Their Role in Human Disease, Arch. Toxicol. 90(1):1-37 (2016).
[7] Ejidike IP., Cu(II) Complexes of 4-[(1E)-N-{2-[(Z)-Benzylidene-amino]ethyl}ethanimidoyl]benzene-1,3-diol Schiff Base: Synthesis, Spectroscopic, In-Vitro Antioxidant, Antifungal and Antibacterial Studies, Molecules. 23(7) (2018).
[8] Bharathi-Dileepan A.G., Daniel-Prakash T., Ganesh-Kumar A., Shameela-Rajam P., Dhayabaran V., Rajaram R., Isatin based macrocyclic Schiff Base Ligands as Novel Candidates for Antimicrobial and Antioxidant Drug Design: In Vitro DNA Binding and Biological Studies, J. Photochem. Photobiol. B. 183:191-200 (2018).
[9] Revathi N., Sankarganesh M., Rajesh J., Raja J.D., Biologically Active Cu(II), Co(II), Ni(II) and Zn(II) Complexes of Pyrimidine Derivative Schiff Base: DNA Binding, Antioxidant, Antibacterial and In Vitro Anticancer Studies, J. Fluoresc., 27(5):1801-1814 (2018).
[10] Palopoli C., Gomez G., Foi A., Doctorovich F., Mallet-Ladeira S., Hureau C., Signorella S., Dimerization, Redox Properties and Antioxidant Activity of Two Manganese(III) Complexes of Difluoro- and Dichloro-Substituted Schiff-
Base Ligands, J. Inorg. Biochem., 167:49-59 (2017).
[11] Gull P., Babgi B.A., Hashmi A.A., Synthesis of Ni(II), Cu(II) and Co(II) Complexes with New Macrocyclic Schiff-Base Ligand Containing Dihydrazide Moiety: Spectroscopic, Structural, Antimicrobial and Antioxidant Properties, Microb. Pathog., 110: 444-449 (2017).
[12] Zhang Y., Zou B., Chen Z., Pan Y., Wang H., Liang H., Yi X., Synthesis and Antioxidant Activities of Novel 4-Schiff Base-7-Benzyloxy-Coumarin Derivatives, Bioorganic Med. Chem. Lett., 21(22): 6811-6815 (2011).
[13] Aswathanarayanappa C., Bheemappa E., Bodke Y.D., Krishnegowda P.S., Venkata SP, Ningegowda R: Synthesis and Evaluation of Antioxidant Properties of Novel 1,2,4-Triazole-Based Schiff Base Heterocycles, Arch. Pharm., 346(12): 922-930 (2013).
[14] Li Y.F., Liu Z.Q., Ferrocenyl Schiff Base as Novel Antioxidant to Protect DNA Against the Oxidation Damage, Eur. J. Pharm. Sci., 44(1-2): 158-163 (2011).
[15] Chen A.S., Taguchi T., Aoyama S., Sugiura M., Haruna M., Wang M.W., Miwa I., Antioxidant Activity of a Schiff Base of Pyridoxal and Aminoguanidine, Free Radic. Biol. Med., 35(11):1392-1403 (2003).
[16] Ejidike I.P., Ajibade P.A., Synthesis, Characterization, Anticancer, and Antioxidant Studies of Ru(III) Complexes of Monobasic Tridentate Schiff Bases, Bioinorg. Chem. Appl., 2016: 9672451 (2016).
[17] Prasad K.S., Kumar L.S., Prasad M., Revanasiddappa H.D., Novel Organotin(IV)-Schiff Base Complexes: Synthesis, Characterization, Antimicrobial Activity, and DNA Interaction Studies, Bioinorg. Chem. Appl., 2010:854514 (2010).
[18] Casanova I., Duran M.L., Viqueira J., Sousa-Pedrares A., Zani F., Real J.A., Garcia-Vazquez J.A., Metal Complexes of a Novel Heterocyclic Benzimidazole Ligand Formed by Rearrangement-Cyclization of the Corresponding Schiff Base. Electrosynthesis, Structural Characterization and Antimicrobial Activity, Dalton. Trans., 47(12): 4325-4340 (2018).
[19] Chaudhary N.K., Mishra P., Metal Complexes of a Novel Schiff Base Based on Penicillin: Characterization, Molecular Modeling, and Antibacterial Activity Study. Bioinorg. Chem. Appl. 2017:6927675 (2017).
[20] Subbaraj P., Ramu A., Raman N., Dharmaraja J., Novel Mixed Ligand Complexes of Bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) Benzene-1,3-diol and 2-Aminophenol/2-Aminobenzoic Acid: Synthesis, Spectral Characterization, Antimicrobial and Nuclease Studies, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117:65-71 (2014).
[21] Nitha L.P., Aswathy R., Mathews N.E., Kumari B.S., Mohanan K., Synthesis, Spectroscopic Characterisation, DNA Cleavage, Superoxidase Dismutase Activity and Antibacterial Properties of Some Transition Metal Complexes of a Novel Bidentate Schiff Base Derived from Isatin and 2-Aminopyrimidine, Spectrochim. Acta A Mol. Biomol. Spectrosc. 118: 154-161 (2014).
[22] Sharaby C.M., Synthesis, Spectroscopic, Thermal and Antimicrobial Studies of Some Novel Metal Complexes of Schiff base Derived from [N1-(4-methoxy-1,2,5-thiadiazol-3-yl) Sulfanilamide] and 2-thiophene Carboxaldehyde. Spectrochim, Acta A Mol. Biomol. Spectrosc., 66(4-5): 1271-1278 (2007).
[23] Song W.J., Cheng J.P., Jiang D.H., Guo L., Cai M.F., Yang H.B., Lin Q.Y., Synthesis, Interaction with DNA and Antiproliferative Activities of Two Novel Cu(II) Complexes with Schiff Base of Benzimidazole, Spectrochim. Acta A Mol. Biomol. Spectrosc., 121: 70-76 (2014).
[24] Geweely N.S., Anticandidal Cytotoxicity, Antitumor Activities, and Purified Cell Wall Modulation by Novel Schiff Base Ligand and Its Metal (II) Complexes Against Some Pathogenic Yeasts, Arch. Microbiol., 191(9): 687-695 (2009).
[25] Proetto M., Liu W., Hagenbach A., Abram U., Gust R., Synthesis, Characterization and In Vitro Antitumour Activity of a Series of Novel Platinum(II) Complexes Bearing Schiff Base Ligands, Eur. J. Med. Chem., 53: 168-175 (2012).
[26] Duff B., Thangella V.R., Creaven B.S., Walsh M., Egan D.A., Anti-Cancer Activity and Mutagenic Potential of Novel Copper(II) Quinolinone Schiff Base Complexes in Hepatocarcinoma Cells, Eur. J. Pharmacol., 689(1-3): 45-55 (2012).
[27] Zhong X., Yi J., Sun J., Wei H.L., Liu W.S., Yu K.B., Synthesis and Crystal Structure of Some Transition Metal Complexes with a Novel Bis-Schiff Base Ligand and Their Antitumor Activities, Eur. J. Med. Chem., 41(9): 1090-1092 (2006).
[28] Chakraborty A., Kumar P., Ghosh K., Roy P., Evaluation of a Schiff Base Copper Complex Compound as Potent Anticancer Molecule with Multiple Targets of Action, Eur. J. Pharmacol., 647(1-3): 1-12 (2010).
[29] You Z.L., Shi D.H., Xu C., Zhang Q., Zhu H.L., Schiff Base Transition Metal Complexes as Novel Inhibitors of Xanthine Oxidase, Eur. J. Med. Chem. 43(4): 862-871 (2008).
[30] Adsule S., Barve V., Chen D., Ahmed F., Dou Q.P., Padhye S., Sarkar F.H., Novel Schiff Base Copper Complexes of Quinoline-2 Carboxaldehyde as Proteasome Inhibitors in Human Prostate Cancer Cells, J. Med. Chem., 49(24): 7242-7246 (2006).
[31] Aslam M.A. Mahmood S.U., Shahid M., Saeed A., Iqbal J., Synthesis, Biological Assay In Vitro and Molecular Docking Studies of New Schiff Base Derivatives as Potential Urease Inhibitors, Eur. J. Med. Chem., 46(11):5473-5479 (2011).
[32] Raman N., Sobha S., Thamaraichelvan A., A Novel Bioactive Tyramine Derived Schiff base and Its Transition Metal Complexes as Selective DNA Binding Agents, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78(2):888-898 (2011).
[33] Qin D.D., Yang Z.Y., Wang B.D., Spectra and DNA-Binding Affinities of Copper(II), Nickel(II) Complexes with a Novel Glycine Schiff Base Derived from Chromone, Spectrochim. Acta A Mol. Biomol. Spectrosc., 68(3):912-917 (2007).
[34] Garrabou X., Wicky B.I., Hilvert D., Fast Knoevenagel Condensations Catalyzed by an Artificial Schiff-Base-Forming Enzyme, J. Am. Chem. Soc., 138(22):6972-6974 (2016).
[35] Ohashi M., Koshiyama T., Ueno T., Yanase M., Fujii H., Watanabe Y., Preparation of Artificial Metalloenzymes by Insertion of Chromium(III) Schiff Base Complexes into Apomyoglobin Mutants, Angew. Chem., 42(9): 1005-1008 (2003).
[36] Gubendran A., Kesavan M.P., Ayyanaar S., Mitu L., Athappan P., Rajesh J., Non-enolisable Knoevenagel condensate Appended Schiff Bases-Metal (II) Complexes: Spectral Characteristics, DNA-Binding and Nuclease Activities, Spectrochim. Acta A Mol. Biomol. Spectrosc, 181:39-46 (2017).
[37] Sumrra S.H., Ibrahim M., Ambreen S,. Imran M., Danish M., Rehmani F.S., Synthesis, Spectral Characterization, and Biological Evaluation of Transition Metal Complexes of Bidentate N,O Donor Schiff Bases, Bioinorg. Chem. Appl., 2014: 812924 (2014).
[38] Sherif O.E., Abdel-Kader N.S., Spectroscopic and Biological Activities Studies of Bivalent Transition Metal Complexes of Schiff Bases Derived from Condensation of 1,4-phenylenediamine and Benzopyrone Derivatives, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117:519-526 (2014).
[39] Neelakantan M.A., Marriappan S.S., Dharmaraja J., Jeyakumar T., Muthukumaran K., Spectral, XRD, SEM and Biological Activities of Transition Metal Complexes of Polydentate Ligands Containing Thiazole Moiety, Spectrochim. Acta A Mol. Biomol. Spectrosc., 71(2):628-635 (2008).
[40] Mohammadi K., Azad S.S., Amoozegar A., New Tetradentate Schiff Bases of 2-amino-3,5-Dibromobenzaldehyde with Aliphatic Diamines and Their Metal Complexes: Synthesis, Characterization and Thermal Stability, Spectrochim. Acta A Mol. Biomol. Spectrosc., 146: 221-227 (2015).
[41] Ejidike I.P., Ajibade P.A., Synthesis, Characterization, Antioxidant, and Antibacterial Studies of Some Metal(II) Complexes of Tetradentate Schiff Base Ligand: (4E)-4-[(2-{(E)-[1-(2,4-Dihydroxyphenyl)ethylidene]amino}ethyl)imino]pentan-2-one, Bioinorg. Chem. Appl., 2015: 890734 (2015).
[42] Aljamali N., Hadi M., Mohamad M., Salih L., Aljamali N., Review on Imine Derivatives and Their Applications,  Int. J. Photochem., 5: 20-32 (2019).
[43] Asadi Z., Mosalanezhad F., The Interaction of Nickel (II) and Copper (II) Schiff Base Complexes with Diorganotin (IV) Dichlorides in Acetonitrile: A Thermodynamic Study, Synth. React. Inorg. M., 41: 1158-1166 (2011).
[44] Bathley G.E., Graddo D.P., Nickel(II)  Hydrosalicylamide  Complexes, Aust. J. Chem., 20: 1749-1751 (1967).
[45] Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J., AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility, J. Comput. Chem.  30(16):2785-2791 (2009).
[46] Visualizer D.S., "Release 3.5", Accelrys Inc, San Diego, CA, USA (2012).
[47] Weiner S.J., Kollman P.A., Case D.A., Singh U.C., Ghio C., Alagona G., Profeta S., Weiner P., A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins, J. Am. Chem. Soc. 106(3): 765-784 (1984).
[48] Malde A.K., Zuo L., Breeze M., Stroet M., Poger D., Nair P.C., Oostenbrink C., Mark AE., An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0, J. Chem. Theory Comput., 7(12): 4026-4037 (2011).
[49] Binder K., Applications of Monte Carlo Methods to Statistical Physics, Rep. Prog. Phys., 60(5): 487 (1997).
[50] Kumari R., Kumar R., Open Source Drug Discovery C, Lynn A: g_mmpbsa--a GROMACS Tool for High-Throughput MM-PBSA Calculations, J. Chem. Inf. Model., 54(7):1951-1962 (2014).
 
[51] Baker N.A., Sept D., Joseph S., Holst M.J., McCammon J.A., Electrostatics of Nanosystems: Application to Microtubules and the Ribosome, Proc. Natl. Acad. Sci. U S A., 98(18): 10037-10041 (2001).
[52] van Aalten D., Amadei A., Bywater R., Findlay J., Berendsen H., Sander C., Stouten P., A Comparison of Structural and Dynamic Properties of Different Simulation Methods Applied to SH3, Biophys. J. 70(2):684-692 (1996).
[53] Bahman Jahromi E., Jafaarnejad L., Vahdani M., Zolghadri S., Toxicity Effect of Bromoacetic Acid on MCF7 Breast Cancer Cell Line and Analysis of Expression of Apoptosis-Associated Genes, Iran. J. Breast. Dis., 13(2): 37-48 (2020).
[54] Andiappan K., Sanmugam A., Deivanayagam E., Karuppasamy K., Kim H.S., Vikraman D., In vitro Cytotoxicity Activity of Novel Schiff Base Ligand-Lanthanide Complexes, Sci. Rep., 8(1): 3054 (2018).
[55] Bauer A.W., Kirby W.M., Sherris J.C., Turck M., Antibiotic Susceptibility Testing by a Standardized Single Disk Method, Am. J. Clin. Pathol., 45(4): 493-496 (1966).
[56] Hu Y., Zhang J., Yu C., Li Q., Dong F., Wang G., Guo Z., Synthesis, Characterization, and Antioxidant Properties of Novel Inulin Derivatives with Amino-Pyridine Group, Int. J. Biol. Macromol. 70:44-49 (2014).
[57] Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C., Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay, Free Radic. Biol. Med., 26(9-10): 1231-1237 (1999).
[58] Benzie I.F., Strain J.J., The Ferric Reducing Ability of Plasma (FRAP) as a Measure of "Antioxidant Power": The FRAP Assay. Anal. Biochem., 239(1): 70-76 (1996).
[59] Noor Z., Afzal N., Rashid S., Exploration of Novel Inhibitors for Class I Histone Deacetylase Isoforms by QSAR Modeling and Molecular Dynamics Simulation Assays, PloS One, 10(10): e0139588 (2015).
[60] Balakin K.V., Ivanenkov Y.A., Kiselyov A.S., Tkachenko S.E., Histone Deacetylase Inhibitors in Cancer Therapy: Latest Developments, Trends and Medicinal Chemistry Perspective, Anti-Cancer Agents Med. Chem., 7(5): 576-592 (2007).
[61] Tazikeh-Lemeski E., Moradi S., Raoufi R., Shahlaei M., Janlou M.M., Zolghadri S., Targeting SARS-COV-2 Non-Structural Protein 16: A Virtual Drug Repurposing Study, J. Biomol. Struct. Dyn., 2020: 1-14 (2020).
[62] da Silva. C.M.S., Modolo L.V., Alves R.B., de Resende M.A., Martins V.B. , de Fatima A., Schiff Bases: A Short Review of their Antimicrobial Activities, J. Adv. Res., 2: 1-8 (2011).
[63] Kandile N.G., Mohamed M.I., Ismaeel H.M., Synthesis and In Vitro Biological Evaluation of New Heterocycles Based on The Indole Moiety, J. Enzyme Inhib. Med. Chem., 30(1): 140-151 (2015).
[64] Fasina T.O., Ejiah F.N., Dueke-Eze C.U., Biological Activity of Copper (II), Cobalt (II) and Nickel (II) Complexes of Schiff Base Derived from O-Phenylenediamine and 5-Bromosalicylaldehyde, Int. J. Biol. Chem., 6: 24-30 (2012).
[65] Al-Amiery A.A., Al-Majedy Y.K., Ibrahim H.H., Al-Tamimi A.A., Antioxidant, Antimicrobial, and Theoretical Studies of the Thiosemicarbazone Derivative Schiff Base 2-(2-imino-1-methylimidazolidin-4-ylidene)hydrazinecarbothioamide (IMHC), Bioorg. Med. Chem. Lett., 2(1): 4 (2012).
[66] Baykara H., Ilhan S., Levent A., Salih Seyitoglu M., Ozdemir S., Okumus V., Oztomsuk A., Cornejo M., Synthesis, Characterization and Experimental, Theoretical, Electrochemical, Antioxidant and Antibacterial Study of a New Schiff Base and Its Complexes, Spectrochim. Acta A Mol. Biomol. Spectrosc., 130: 270-279 (2014).
[67] Iftikhar B., Javed K., Ullah Khan M.S., Akhter Z., Mirza B., Mckee V., Synthesis, Characterization and Biological Assay of Salicylaldehyde Schiff Base Cu(II) Complexes and Their Precursors, J. Mol. Struct., 1155: 337-348 (2018).