NaY Zeolite and TiO2 Impregnated NaY Zeolite for the Adsorption and Photocatalytic Degradation of Methylene Blue under Sunlight

Document Type : Research Article


Laboratory of Materials Technology, University of Science and Technology Houari Boumediene, B.P. 32, El-Alia, Bab-Ezzouar, Algiers, ALGERIA


NaY zeolite was impregnated by TiO2 to prepare a novel catalyst for the adsorption and photocatalytic degradation of methylene blue (MB). The samples were characterized by XRD, SEM, EDS, and FT-IR techniques. The percentage adsorption of MB on NaY reaches 88% and an adsorption capacity of 6.55 mg/g under optimized parameters ([MB] = 10 mg/L,  pH = 6, S/L = 2 mg/L, and T = 25°C). The MB adsorption process follows Langmuir isotherm. The thermodynamic parameters were investigated and showed an endothermic and physical process. The MB adsorption also follows a pseudo-second-order kinetic. The photo-degradation of the MB dye was successfully carried out on the TiO2/NaY catalyst under sunlight. The MB photo-degradation also follows a Langmuir-Hinshelwood first-order kinetic.


Main Subjects

[1] Parisi M., Fatarella E., Spinelli D., Pogni R., Basosi R., Environmental Impact Assessment of an Eco-Efficient Production for Coloured Textiles, J. Clean. Prod., 108: 514-524 (2015).
[2] Natarajan S., Bajaj H., Tayade R., Recent Advances Based on the Synergetic Effect of Adsorption for Removal of Dyes From Waste Water Using Photocatalytic Process, Int. J. Environ. Sci., 65: 201-222 (2018).
[3] Bethi B., Sonawane S., Bhanvase B., Gumfekar S., Nanomaterials-Based Advanced Oxidation Processes for Wastewater Treatment: a Review, Chem. Eng. Process., 109: 178-189 (2016).
[6] Brillas E., Martínez-Huitle C., Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods. An Updated Review, Appl. Catal. B-Environ., 166: 603-643 (2015).
[7] Borges G., Silva L., Penido J., de Lemos L., Mageste A., Rodrigues G., A Method for Dye Extraction Using an Aqueous Two-Phase System: Effect of Co-Occurrence of Contaminants in Textile Industry Wastewater, J. Environ. Manage., 183: 196-203 (2016).
[8] Forgacs E., Cserhati T., Oros G., Removal of Synthetic Dyes From WasteWaters: A Review, Environ. Int., 30: 953-971 (2004).
[9] Mekatel H., Amokrane S., Aid A., Nibou D., Trari M., Adsorption of Methyl Orange on Nanoparticles of a Synthetic Zeolite NaA/CuO, CR. Chim., 18: 336-344 (2015).
[10] Grčić I., Papić S., Mesec D., Koprivanac N., Vujević D., The Kinetics and Efficiency of UV Assisted Advanced Oxidation of Various Types of Commercial Organic Dyes in Water, ‎J. Photochem. Photobiol A: Chem., 273:  49-58 (2014).
[11] Mekatel EH., Amorkrane S., Trari M., Nibou D., Dahdouh N., Ladjali S., Combined Adsorption/ Photocatalysis Process for the Decolorization of Acid Orange 61, Arab. J. Scie. Eng., 44(6): 5311-5322 (2019).
[12] Belaissa Y., Nibou D., Assadi A., Bellal B., Trari M., A New Hetero-Junction P-CuO/n-ZnO for the Removal of Amoxicillin by Photocatalysis under Solar Irradiation, J. Taiwan. Inst. Chem. Eng., 68:  254-265 (2016).
[13] Soltani T., Entezari H., Photolysis and Photocatalysis of Methylene Blue by Ferrite Bismuth Nanoparticles Under Sunlight Irradiation, J. Mol. Catal. A-Chem., 377:  197-203 (2013).
[14] Borges M., Sierra M., Cuevas E., García R., Esparza P., Photocatalysis with Solar Energy: Sunlight-Responsive Photocatalyst Based on TiO2 Loaded on a Natural Material for Wastewater Treatment, Solar. Eng., 135:  527-535 (2016).
[15] Yonli A., Batonneau-Gener I., J. Koulidiati, Adsorptive Removal of α-Endosulfan from Water by Hydrophobic Zeolites. An Isothermal Study, J. Hazard. Mater., 203:  357-362 (2012).
[16] Nibou D., Mekatel H., Amokrane S., Barkat M., Trari M., Adsorption of Zn2+ Ions onto NaA and NaX Zeolites: Kinetic, Equilibrium and Thermodynamic Studies, J. Hazard. Mater., 173: 637-646 (2010).
[17] Barkat M., Nibou D., Amokrane S., Chegrouche S., Mellah A., Uranium (VI) Adsorption on Synthesized 4A and P1 Zeolites: Equilibrium, Kinetic, and Thermodynamic Studies, Com.  Rend. Chim., 18(3): 261-269 (2015).
[18] Ferhat D., Nibou D., Mekatel E.H., Amokrane S., Adsorption of Ni2+ Ions onto NaX and NaY Zeolites: Equilibrium, Kinetic, Intra Crystalline Diffusion and Thermodynamic Studies, Iran. J. Chem. Chem. Eng. (IJCCE), 38 (6): 63-81(2019).
[19] Nibou D., Amokrane S., Lebaili N., Use of NaX Porous Materials in the Recovery of Iron Ions, Desalination 250 (1), 459-462 (2010).
[20] Benmessaoud A. Nibou D., Mekatel E.H., Amokrane S., A Comparative Study of the Linear and Non-Linear Methods for Determination of the Optimum Equilibrium Isotherm for Adsorption of Pb2+ Ions onto Algerian Treated Clay, Iran. J. Chem. Chem. Eng. (IJCCE), 39 (4): 153-171 (2020).
[21] Mekatel E.H., Trari M., Nibou D., Ibtissam S., Amorkrane S., Preparation and Characterization of a-Fe2O3 Supported Clay as a Novel Photocatalyst for Hydrogen Evolution, Inter. J. Hydro Ener., 44 (21): 10309-10315 (2019).
[22] Aid A., Amokrane S., Nibou D., Mekatel E., Trari M., Hulea V., Modeling Biosorption of Cr (VI) onto Ulva Compressa L. from Aqueous Solutions, Wat. Sci. Tech., 77(1): 60-69 (2018).
[23] Ladjali S., Amokrane S., Mekatel E.H., Nibou D., Adsorption of Cr(VI) on Stipa Tenacissima L (Alfa): Characteristics, Kinetics and Thermodynamic Studies,  J. Sep. Sci. Tech., 54(6): 876-887 (2019).
[24] Chen Y., Zhai S., Liu N., Song Y., An Q., Song X., Dye Removal of Activated Carbons Prepared from NaOH-Pretreated Rice Husks by Low-Temperature Solution-Processed Carbonization and H3PO4 Activation, Bioresour. Technol., 144:  401-409 (2013).
[25] Haddad D., Mellah A., Nibou D., Khemaissia S., Promising Enhancement in the Removal of Uranium Ions by Surface-Modified Activated Carbons: Kinetic and Equilibrium Studies, J. Environ. Eng., 144(5): 04018027 (2018)
[26] Nibou D. and Amokrane S., Catalytic Performances of Exchanged Y Faujasites by Ce3+, La3+, UO22+, Co2+, Sr2+, Pb2+, Tl+ and NH4+ Cations in Toluene Dismutation Reaction, Compt. Rend. Chim., 13(5): 527-537 (2010).
[27]  Nibou D. and Amokrane S., Dependence Between The Activity and Selectivity Of NaLaY and NaCeY Catalysts in the Catalytic Disproportionation of Toluene, Stud. Surf. Scie. Catal. Series. 158 B: 1645-1652 (2005).
[28] Nibou D., Azzouz A., Dumitriu E., Bilba V., Comparative Study on the Effect of Introducing the Uranyl Ion and Various Multivalent Cations into Y-Faujasite and an Algerian Bentonite, Rev. Roum. Chim. 39(9): 1099-1108 (1994).
[30] Amokrane S., Rebiai R., Lebaili S., Nibou D., Marcon G., Selective synthesis of Monooctylamines by Ammonia Alkylation with Octanol Using NaY, ZSM-5 SAPO-5, SAPO-11, SAPO-31, SAPO-34, Study Surf. Scie. Catal. Series 135: 230 (2001).
[31] Azzouz A., Nibou D., Abbad B., Achache M., Catalytic Amination of Octanol in Gaz Phase.  Action of Uranyle Ions over the Catalytic Activity of Y Faujasite,  J. Mole.Catal. 68 (2): 187-197 (1991)
[32] Breck D.W., Zeolite Molecular Sieves-Structure Chemistry and Use, Wiley Interscience, New York (1974).
[33] Krobba A., Nibou D., Amokrane S., Mekatel H., Adsorption of Copper (II) onto Molecular Sieves NaY, Desal. Wat. Treat., 37: 1–7 (2012).
[34] Houhoune F., Nibou D., Amokrane S., Barkat M., Modelling and Adsorption Studies of Removal Uranium (VI) Ions on Synthesised Zeolite NaY, Des. Wat. Treat., 51 (28-30): 5583-5591 (2013).
[35] Amokrane S., Rebiai R., Nibou D., Behaviour of Zeolite A, Faujasites X and Y Molecular Sieves in Nitrogen Gas Adsorption, J. Appl. Sci., 7: 1985-1988 (2007).
[36] Baerlicher C., Meier W.M., Olson D.H., "Atlas of Zeolite Framework Types", 5th Revised Ed. Elsevier, Amesterdam (2001).
[37] Tayade R., Kulkarni R., Jasra R., Enhanced Photocatalytic Activity of TiO2-Coated NaY and HY Zeolites for the Degradation of Methylene Blue in Water, Ind. Eng. Chem. Res., 46:  369-376 (2007).
[38] M.M.J. Traecy et J.B. Higging, "Collection of Simulated X Patterns for Zeolites". 4th Revised Ed. Elsevier, Amesterdam. (2001).
[39] Shirani M., Semnani A., Haddadi H., Habibollahi S., Optimization of Simultaneous Removal of Methylene Blue, Crystal Violet, and Fuchsine from Aqueous Solutions by Magnetic NaY Zeolite Composite, Water. Air. Soil. Poll., 225: 2054 (2014).
[40] Zendehdel M., Kalateh Z., Alikhani H., Efficiency Evaluation of NaY Zeolite and TiO2/NaY Zeolite in Removal of Methylene Blue Dye from Aqueous Solutions, J. Environ. Health. Sci. Eng., 8: 265 (2011).
[41] Aysan H., Edebali S., Ozdemir C., Karakaya M.C.k., Karakaya N., Use of Chabazite, a Naturally Abundant Zeolite, for The Investigation of The Adsorption Kinetics and Mechanism of Methylene Blue Dye, Micropor. Mesopor. Mat., 235: 78-86 (2016).
[42] Abkenar S.D., Ganjali M.R., Hossieni M., Karimi M.S., Application of Copper Vanadate Nanoparticles for Removal of Methylene Blue from Aqueous Solution: Kinetics, Equilibrium, and Thermodynamic Studies, Iran. J. Chem. Chem. Eng. (IJCCE), 38(6): 83-92 (2019)
[43] EL-Mekkawi D., Ibrahim F., Selim M., Removal of Methylene Blue from Water Using Zeolites Prepared from Egyptian Kaolins Collected from Different Sources, J. Environ. Chem. Eng., 4: 1417-1422 (2016).
[44] Mekatel E.H., Nibou D., Trari M., Amokrane S., Dahdouh N., Removal of Maxilon Red by Adsorption and Photocatalysis: Optimum Conditions, Equilibrium and Kinetic Studies, Iran. J. Chem. Chem. Eng. (IJCCE), 40 (1): 93-110 (2021).
[45] Malekbala M., Khan M., Hosseini S., Abdullah L., Choong T., Adsorption/Desorption of Cationic Dye on Surfactant Modified Mesoporous Carbon Coated Monolith: Equilibrium, Kinetic and Thermodynamic Studies, J. Ind. Eng. Chem., 21: 369-377 (2015).
[46] Tseng R., Tseng S., Pore Structure and Adsorption Performance of The KOH-Activated Carbons Prepared from Corncob, ‎J. Colloid. Interface. Sci., 287: 428-437 (2005).
[49] Lin L., Lin Y., Li C., Wu D., Kong H., Synthesis of Zeolite/Hydrous Metal Oxide Composites from Coal Fly Ash as Efficient Adsorbents for Removal of Methylene Blue from Water, Int. J. Miner. Process., 14:  32-40 (2016).
[50] Chong M., Jin B., Chow C., Saint C., Recent Developments in Photocatalytic Water Treatment Technology: a Review, Water. Res, 44:  2997-3027 (2010).
[51] Faraji H., Mohamadi A.A., Arezomand H.R.S., Mahvi A.H., Kinetics and Equilibrium Studies of  the Removal of Blue Basic 41 and Methylene Blue from Aqueous Solution Using Rice Stems, Iran. J. Chem. Chem. Eng. (IJCCE), 34(3): 33-42 (2015).