Optimization of Low-Temperature Lipase Production Conditions and Study on Enzymatic Properties of Aspergillus Niger

Document Type : Research Article

Authors

1 Qinghai University (Qinghai Academy of Animal Science and Veterinary Medicine), Xining 810016 P.R. CHINA

2 School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P.R. CHINA

3 Department of Agriculture, Jouybar Branch, Islamic Azad University, Jouybar, I.R. IRAN

4 Department of Fishery, Babol Branch, Islamic Azad University, Babol, I.R. IRAN

Abstract

In order to obtain the optimum fermentation medium and conditions for extracellular lipase production by Aspergillus Niger, the fermentation conditions of Aspergillus Niger were optimized by single factor and response surface design, the enzymatic properties of the crude enzyme were also studied. The results showed that the optimum fermentation medium was soluble starch 4%, (NH4)2SO4 0.1%, K2HPO4 0.1%, MgSO4·7H2O 0.05%, peptone 3%, olive oil 1.05%, initial pH 7. The optimal fermentation conditions were 30, the sample size was 26 mL/250 mL and the shaking speed was 213 r/min. The optimized lipase activity was 1.55 U/mL, which was 7.75 times of the pre-optimized lipase. It was found that when the pH value of lipase was 7.0, the activity of lipase reached its maximum value of 79.3±6.82%. When the pH value was between 6.0 and 8.0, the activity of lipase could be kept above 60% and the stability was good. At the same time, through the study of the temperature stability of lipase, found that the lipase was stable at 25- 35, its activity could reach more than 70%. When the enzyme activity reaches the maximum (107.6±9.57%), the temperature was 30.

Keywords

Main Subjects


[1] Bharathi D., Rajalakshmi G., Microbial Lipases: An Overview of Screening, Production and Purification, J. Biosci. Bioeng., 22:101368 (2019).
[2] Sarmah N., Revathi D., Sheelu G., Yamuna Rani K., Sridhar S., Mehtab V., Sumana C., Recent Advances on Sources and Industrial Applications of Lipases, Biotechnol. Progress, 34(1): 5-28 (2018).
[3] Contesini F.J., Lopes D.B., Macedo G.A., da Graça Nascimento M., de Oliveira Carvalho P., Aspergillus sp. Lipase: Potential Biocatalyst for Industrial Use, J. Mol. Catal. B: Enzym., 67(3-4): 163-171 (2010).
[4] Sharma D., Sharma B., Shukla, A.K., Biotechnological Approach of Microbial Lipase: A Review, Biotechnology, 10(1): 23-40 (2011).
[5] Cihangir N., Sarikaya E., Investigation of Lipase Production by a New Isolate of Aspergillus sp, World J. Microbiol. Biotechnol., 20(2): 193-197(2004).
[6] Rashid N., Shimada Y., Ezaki S., Atomi H., Imanaka T., Low-temperature Lipase From Psychrotrophic Pseudomonas Sp. Strain KB700A. Appl. Environ. Microbiol., 67(9): 4064-4069 (2001).
[7] Zechner R., Kienesberger P.C., Haemmerle G., Zimmermann R., Lass A., Adipose Triglyceride Lipase and the Lipolytic Catabolism of Cellular Fat Stores, J. Lipid Res., 50(1): 3-21 (2009).
[8] Singh A.K., Mukhopadhyay M., Overview of Fungal Lipase: A Review, Appl. Biochem. Biotechnol., 166(2): 486-520 (2012).
[9] Mehta A., Bodh U., Gupta R., Fungal Lipases: A Review. J. Biotech. Res., 8: 58-77 (2017).
[10] Houde A., Kademi A., Leblanc D., Lipases and Their Industrial Applications, Appl. Biochem. Biotechnol., 118(1): 155-170 (2004).
[11] Cusano A.M., Parrilli E., Marino G., Tutino M.L., A Novel Genetic System for Recombinant Protein Secretion in the Antarctic Pseudoalteromonas Haloplanktis TAC125, Microb. Cell Fact., 5(1): 1-8 (2006).
[12] Verma N., Thakur S., Bhatt A.K., Microbial Lipases: Industrial Applications and Properties (A Review), Int. Res. J. Biol. Sci., 1(8): 88-92 (2012).
[13] Fang Y., Lu Z., Lv F., Bie X., Liu S., Ding Z., Xu W., A Newly Isolated Organic Solvent Tolerant Staphylococcus Saprophyticus M36 Produced Organic Solvent-Stable Lipase, Curr. Microbial., 53(6): 510-515 (2006).
[14] Snellman E.A., Sullivan E.R., Colwell R.R., Purification and Properties of the Extracellular Lipase, LipA, of Acinetobacter sp. RAG-1, Eur. J. Biochem., 269(23): 5771-5779 (2002).
[15] Sharma R., Chisti Y., Banerjee U.C., Production, Purification, Characterization, and Applications of Lipases. Biotechnol. Adv., 19(8): 627-662 (2001).
[16] Esakkiraj P., Prabakaran G., Maruthiah T., Immanuel G., Palavesam A., Purification and Characterization of Halophilic Alkaline Lipase from Halobacillus sp., Proc. Nat. Acad. Sci. India Section B: Biol. Sci., 86(2): 309-314 (2016).
[17] Tan T., Zhang M., Wang B., Ying C., Deng L., Screening of High Lipase Producing Candida Sp. and Production of Lipase by Fermentation, Proc. Biochem., 39(4): 459-465 (2003).
[18] Sabzalievich B., Dustmurodovich S., Saidmurodovich N., Abdumanonovna A., Yusufovna N., Genetically Modified Sources in Food and Seeds in Tajikistan. Cent. Asian J. Environ. Sci. Technol. Innov., 1(6): 291-296 (2020).
[19] Maiangwa J., Ali M.S.M., Salleh A.B., Abd Rahman R.N.Z.R., Shariff F.M., Leow T.C., Adaptational Properties and Applications of Cold-Active Lipases from Psychrophilic Bacteria, Extremophiles, 19(2): 235-247 (2015).
[20] Ertuğrul S., Dönmez G., Takaç S., Isolation of Lipase Producing Bacillus Sp. From Olive Mill Wastewater and Improving its Enzyme Activity, J. Hazard. Mater., 149(3): 720-724 (2007).
[22] de Oliveira Carvalho P., Contesini F.J., Bizaco R., Alves Macedo G., Kinetic Properties and Enantioselectivity of the Lipases Produced by Four Aspergillus Species, Food Biotechnol., 19(3): 183-192 (2005).
[23] Liu W., Jia B., Zhao H., Xu L., Yan Y., Preparation of a Whole-Cell Biocatalyst of Aspergillus Niger Lipase and its Practical Properties. J. Agric. Food Chem., 58(19): 10426-10430 (2010).
[24] Rodrigues R.C., Virgen-Ortíz J.J., Dos Santos J.C., Berenguer-Murcia Á., Alcantara A.R., Barbosa O., Ortiz C., Fernandez-Lafuente R., Immobilization of Lipases on Hydrophobic Supports: Immobilization Mechanism, Advantages, Problems, and Solutions, Biotechnol. Adv., 37(5): 746-770 (2019).
[25] Alkan H., Baysal Z., Uyar F., Dogru M., Production of Lipase by a Newly Isolated Bacillus Coagulans Under Solid-State Fermentation Using Melon Wastes, Appl. Biochem. Biotechnol., 136(2): 183-192 (2007).
[26] Liu G., Ren G., Zhao L., Cheng L., Wang C., Sun B., Antibacterial Activity and Mechanism of Bifidocin A Against Listeria Monocytogenes. Food Control, 73: 854-861 (2017).
[27] Jiang D., Chen F.X., Zhou H., Lu Y.Y., Tan H., Yu S.J., Yuan J., Liu H., Meng W., Jin Z.B., Bioenergetic Crosstalk Between Mesenchymal Stem Cells and Various Ocular Cells Through the Intercellular Trafficking of Mitochondria, Theranostics, 10(16): 7260 (2020).
[28] Wang M., Hu M., Li Z., He L., Song Y., Jia Q., Zhang Z., Du M., Construction of Tb-MOF-on-Fe-MOF Conjugate as a Novel Platform for Ultrasensitive Detection of Carbohydrate Antigen 125 and Living Cancer Cells, Biosens. Bioelectron., 142: 111536 (2019).
[29] Wang M., Yang L., Hu B., Liu J., He L., Jia Q., Song Y., Zhang Z., Bimetallic NiFe Oxide Structures Derived from Hollow NiFe Prussian Blue Nanobox for Label-Free Electrochemical Biosensing Adenosine Triphosphate, Biosens. Bioelectron., 113: 16-24 (2018).
[30] Zhang J., Liu B., A Review on the Recent Developments of Sequence-Based Protein Feature Extraction Methods, Curr. Bioinform., 14(3): 190-199 (2019).
[31] Bafkar A., Kinetic and Equilibrium Studies of Adsorptive Removal of Sodium-Ion onto Wheat Straw and Rice Husk Wastes, Cent. Asian J. Environ. Sci. Technol. Innov., 1(6): 308-325 (2020).
[33] Dalmau E., Montesinos J.L., Lotti M., Casas C., Effect of Different Carbon Sources on Lipase Production by Candida Rugosa, Enzyme Microb. Technol., 26(9-10): 657-663 (2000).
[35] Wang X.F., Gao P., Liu Y.F., Li H.F., Lu F., Predicting Thermophilic Proteins by Machine Learning, Curr. Bioinform., 15(5): 493-502 (2020).
[36] Zou Q., Xing P., Wei L., Liu B., Gene2vec: Gene Subsequence Embedding for Prediction of Mammalian N6-methyladenosine sites from mRNA. RNA, 25(2): 205-218 (2019).
[37] Huang W.Y., Wang G.Q., Li W.H., Li T.T., Ji G.J., Ren S.C., Jiang M., Yan L., Tang H.T., Pan Y.M., Ding Y.J., Porous Ligand Creates New Reaction Route: Bifunctional Single-Atom Palladium Catalyst for Selective Distannylation of Terminal Alkynes. Chem, 6(9): 2300-2313 (2020).
[38] Wang Q., Sun S., Zhang X., Liu H., Sun B., Guo S., Influence of Air Oxidative and Non-Oxidative Torrefaction on the Chemical Properties of Corn Stalk, Bioresour. Technol., 125120 (2021).
[39] Shu Z., Lin H., Shi S., Mu X., Liu Y., Huang J., Cell-Bound Lipases from Burkholderia sp. ZYB002: Gene Sequence Analysis, Expression, Enzymatic Characterization, and 3D Structural Model, BMC Biotechnol., 16(1): 1-13 (2016).
[41] Hassanpour M., Techno-Economic Assessment Model of Screening Step of Agricultural Wastes Recycling to Animal Feed Project, Cent. Asian J. Environ. Sci. Technol. Innov., 2(1): 1-11 (2021).
[42] Liu J.B., Ren M., Lai X., Qiu G., Iron-Catalyzed Stereoselective Haloamidation of Amide-Tethered Alkynes. Chem. Commun., (2021).
[43] Duan Y., Liu Y., Chen Z., Liu D., Yu E., Zhang X., Fu H., Fu J., Zhang J., Du H., Amorphous Molybdenum Sulfide Nanocatalysts Simultaneously Realizing Efficient Upgrading of Residue and Synergistic Synthesis of 2D MoS2 Nanosheets/Carbon Hierarchical Structures, Green Chem., 22(1): 44-53 (2020).
[44] Pang X., Gong K., Zhang X., Wu S., Cui Y., Qian B.Z., Osteopontin as a Multifaceted Driver of Bone Metastasis and Drug Resistance, Pharmacol. Res., 144: 235-244 (2019).
[46] Bakhshi B., Rostami-Ahmadvandi H., Fanaei H., Camelina, An Adaptable Oilseed Crop for the Warm and Dried Regions Of Iran. Cent. Asian J. Plant Sci. Innov., 1(1): 39-45 (2021).
[47] Yang M., Abdalrahman H., Sonia U., Mohammed A.I., Vestine U., Wang M., Ebadi A.G., Toughani M., The Application of DNA Molecular Markers in the Study of Codonopsis Species Genetic Variation, A Review. Cell. Mol. Biol., 66(2): 23-30 (2020).
[48] Yang M., Shi D., Wang Y., Ebadi A.G., Toughani M., Study on Interaction of Coomassie Brilliant Blue G-250 with Bovine Serum Albumin by Multispectroscopic. Int. J. Pept. Res. Ther., 27(1): 421-431 (2021).
[49] Wen L., Zhang Y., Yang B., Han F., Ebadi AG., Toughani M., Knockdown of Angiopoietin-Like Protein 4 Suppresses the Development of Colorectal Cancer, Cell. Mol. Biol., 66(5):117-124 (2020).
[50] Karbakhshzadeh A., Derakhshande M., Farhami N., Hosseinian A., Ebrahimiasl S., Ebadi AG., Study the Adsorption of Letrozole Drug on the Silicon Doped Graphdiyne Monolayer: A DFT Investigation. Silicon, 10:1-8 (2021).
[51] Hassanpour A., Zamanfar M., Ebrahimiasl S., Ebadi AG., Liu P., Dopamine Drug Adsorption on the Aluminum Nitride Single-Wall Nanotube: AB Initio Study. Arab. J. Sci. Eng., 1-8 (2021).
[52] Yaşar S., Hosseinian A., Ebadi A.G., Ahmadi S., Ebrahimiasl S., Kumar A., A Novel Biosensor for Gabapentin Drug Detection Based on the Pd-Decorated Aluminum Nitride Nanotube, Struct. Chem., 1-1 (2021).
[53] Hassanpour A., Ebrahimiasl S., Youseftabar-Miri L., Ebadi A.G., Ahmadi S., Eslami M., A DFT Study on the Electronic Detection of Mercaptopurine Drug by Boron Carbide Nanosheets, Comput. Theor. Chem., 1198:113166 (2021).