Estimation of Pressure Drop of Single-Phase Flow in Horizontal Long Pipes Using Artificial Neural Network

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

Abstract

Large-pressure drops and drag along the pipe route are the problems with fluid transfer lines. For many years, various methods have been employed to reduce the drag in fluid transmission lines. One of the best ways for this purpose is to reduce friction coefficients by utilizing drag-lowering materials. Experimentally by adding minimal amounts of this material at the ppm scale to the lines and reducing the drag of the flow, fluid can be pumped without the need to change the size of the pipe. In this study, the effect of carboxymethylcellulose biopolymer on the water flow reduction in a 12.7- and 25.4-mm galvanized pipe was investigated. In order to have a comprehensive analysis of process conditions, experiments were carried out with three different levels of concentration, flow rate, and temperature. Also, as a new innovation in this investigation, the outputs of the experimental data were evaluated and analyzed using the Taguchi method and neural network system and optimized through a genetic algorithm. In this study, the highest rate of drag reduction will be achieved at 39 ° C and at a concentration of 991.6 ppm and a flow rate of 1441.1L/h was 59.83% at 12.7-mm diameter.

Keywords

Main Subjects


[3] Mucharam L., Rahmawati S., Ramadhani R., Drag Reducer Selection for Oil Pipeline Based Laboratory ExperimentMod. Appl. Sci., 12(1): 112 (2017).
[4] Karami H., Mowla D., A General Model for Predicting Drag Reduction in Crude Oil Pipelines, J. Pet. Sci. Eng., 111: 78-86 (2013).
[5] Wang Y., Yu B., Zakin J L., Shi H., Review on Drag Reduction and its Heat Transfer by Additives, Adv. Mech. Eng., 3:478749 (2011).
[6] Han W.J., Dong Y.Z., Choi H.J., Applications of Water-Soluble Polymers in Turbulent Drag Reduction, Processes, 5(2): 24 (2017).
[7] Hong C.H., Jang C.H., Choi H.J., Turbulent Drag Reduction with Polymers in Rotating Disk Flow,  Polymers, 7(7): 1279-1298 (2015).
[8] Abubakar A., Al-Wahaibi T., Al-Wahaibi Y., Al-Hashmi A., Al-Ajmi A., Roles of Drag Reducing Polymers in Single-and Multi-Phase FlowsChem. Eng. Res. Des., 92(11):2153-2181 (2014).
[9] Gierczycki A., Drzazga M., Lemanowicz M., Dzido G., Drag Reduction in the Flow of CuO Based Nanofluid, Inżynieria i Aparatura Chemiczna, (1): 8-9 (2015).
[10] Bari H A., Ahmad M., Yunus R., Formulation of Okra-Natural Mucilage as Drag Reducing Agent in Different Size of Galvanized Iron Pipes in Turbulent Water Flowing System, J. App. Sci. (Faisalabad), 10(23): 3105-3110 (2010).
[11] Al-Yaari M., Soleimani A., Abu-Sharkh B., Al-Mubaiyedh U., Al-Sarkhi A., Effect of Drag Reducing Polymers on Oil-Water Flow in a Horizontal PipeInt. J. Multiphase Flow, 35(6):516-524 (2009).
[12] Edomwonyi-Otu L., Chinaud M., Angeli P., Effect of Drag Reducing Polymer on Horizontal Liquid–Liquid Flows, Exp. Therm. Fluid Sci., 64: 164-174 (2015).
[13] Jafari A., Shahmohammadi A., Mousavi S M., CFD Investigation of Gravitational Sedimentation Effect on Heat Transfer of a Nano-FerrofluidIran. J. Chem. Chem. Eng. (IJCCE), 34(1): 87-96 (2015).
[14] Mohebbi K., Rafee R., Talebi F., Effects of Rib Shapes on Heat Transfer Characteristics of Turbulent Flow of Al2O3-Water Nanofluid Inside Ribbed Tubes, Iran. J. Chem. Chem. Eng. (IJCCE), 34(3): 61-77 (2015).
[15] Rashed M.K., Mohd Salleh M.A., Abdulbari H.A., Ismail M.H.S., Enhancing the Drag Reduction Phenomenon within a Rotating Disk Apparatus Using Polymer-Surfactant Additives, Appl. Sci., 6(12): 355 (2016).
[16] Wyatt N.B., Gunther C.M., Liberatore M.W., Drag Reduction Effectiveness of Dilute and Entangled Xanthan in Turbulent Pipe Flow, J. Non-Newtonian Fluid Mech., 166(1-2): 25-31 (2011).
[17] Patasinski P., Boersma B., Nieuwstadt F., Hulsen M., Van den Brule B.,Hunt J., Turbulent Channel Flow Near Maximum Drag Reduction: Simulations, Experiments and Mechanisms, J. Fluid Mech., 490: 251-291 (2003).
[18] Ptasinski P., Nieuwstadt F., Van Den Brule B., Hulsen M., Experiments in Turbulent Pipe Flow with Polymer Additives at Maximum Drag ReductionFlow, Turbul. Combust., 66(2): 159-182 (2001).
[19] Eshghinejadfard A., Sharma K., Thévenin D., Effect of Polymer and Fiber Additives on Pressure Drop in a Rectangular Channel, J. Hydrodyn, 29(5):871-878 (2017).
[20] Amarouchene Y., Bonn D., Kellay H., Lo T-S., L’vov V.S., Procaccia I., Reynolds Number Dependence of Drag Reduction by Rodlike PolymersPhys. Fluids, 20(6): 065108 (2008).
[21] Hong C., Zhang K., Choi H., Yoon S., Mechanical Degradation of Polysaccharide Guar Gum Under Turbulent Flow, J. Ind. Eng. Chem., 16(2): 178-180 (2010).
[23] Calzetta E., Drag Reduction by Polymer Additives From Turbulent Spectra, Phys. Rev. E., 82(6): 066310 (2010).
[24] Salehudin S.S., Ridha S., Coconut Residue as Biopolymer Drag Reducer Agent in Water Injection System, Int. J. Appl. Eng. Res., 11(13): 8037-8040 (2016).
[25] Bari H.A., Letchmanan K., Yunus R.M., Drag Reduction Characteristics Using Aloe Vera Natural Mucilage: An Experimental Study, J. Appl. Sci., 11(6):1039-1043 (2011).
[26] Bari H.A.A., Yousif Z., Acoob Z.B., Drag Reduction Characteristics of Polyacrylamide in a Rotating Disk Apparatus, Res. J. Appl. Sci., Eng. Technol.  12(10): 1025-1030 (2016).
[27] Perlekar P., Mitra D., Pandit R., Direct Numerical Simulations of Statistically Steady, Homogeneous, Isotropic Fluid Turbulence with Polymer Additives,  Phys. Rev. E, 82(6): 066313 (2010).
[28] Bari H A., Mohamad N., Mohd N., Nour A., Effect of Chitosan Solution in Turbulent Drag Reduction in Aqueous Media FlowSci. Res. Essays, 6(14): 3058-3064 (2011).
[29] Abdulbari H.A., Kamarulizam N.S., Nour A., Grafted Natural Polymer as New Drag Reducing Agent: An Experimental Approach, Adv. Mech. Eng., 18(3): 361-371 (2012).
[30] Abubakar A., Al-Hashmi A., Al-Wahaibi T., Al-Wahaibi Y., Al-Ajmi A., Eshrati M., Parameters of Drag Reducing Polymers and Drag Reduction Performance in Single-Phase Water Flow, Adv. Mech. Eng., 6: 202073 (2014).
[31] Coelho E.C., Barbosa K.C., Soares E.J., Siqueira R.N., Freitas J.C., Okra as a Drag Reducer for High Reynolds Numbers Water Flows, Rheol. Acta, 55(11-12):983-991 (2016).
[33] Karami H R., Rahimi M., Ovaysi S., Degradation of Drag Reducing Polymers in Aqueous SolutionsKorean J. Chem. Eng., 35(1):34-43 (2018).
[34] Volokh K., An Explanation of the Drag Reduction Via Polymer Solute, Acta Mech., 229(10): 4295-4301 (2018).
[35] Zhang X., Duan X., Muzychka Y., Analytical Upper Limit of Drag Reduction with Polymer Additives in Turbulent Pipe Flow, J. Fluids Eng., 140(5):  - (2018).
[36] Chai Y., Li X., Geng J., Pan J., Huang Y., Jing D., Mechanistic Study of Drag Reduction in Turbulent Pipeline Flow over Anionic Polymer and Surfactant Mixtures, Colloid Polym. Sci., 297(7-8): 1025-1035 (2019).
[37] Rashid F., Azziz H N., Talib S M., Experimental Investigation of Drag Reduction by a Polymeric Additive in Crude Oil Flow in Horizontal Pipe, J. Ad. Res. Fluid. Mech. Therm. Sci., 60(1): 15-23 (2019).
[38] Sifferman TR., Greenkorn RA., Drag Reduction in Three Distinctly Different Fluid Systems, Soc. Pet. Eng. J., 21(06): 663-669 (1981).
[39] Peyghambarzadeh S.M., Hashemabadi S.H., Saffarian H., Shekari F., Experimental Study of the Effect of Drag Reducing Agent on Pressure Drop and Thermal Efficiency of an Air Cooler, J. Heat Mass Transfer., 52(1): 63-72 (2016).
[41] Virk P S., Drag Reduction Fundamentals, AIChE J., 21(4): 625-656 (1975).
[42] Panahi P.N., Salari D., Niaei A., Mousavi S.M., Study of M-ZSM-5 Nanocatalysts (M: Cu, Mn, Fe, Co…) for Selective Catalytic Reduction of NO with NH3: Process Optimization by Taguchi Method, Chin. J. Chem. Eng., 23(10):1647-1654 (2015).
[43] Hajela P., Berke L., Neural Networks in Structural Analysis and Design: An Overview, Comp. Syst. Eng., 3(1-4): 525-538 (1992).
[44] Haykin S., Network N., A Comprehensive FoundationNeural Networks, 2: 41 (2004).
[46] Song K-S., Kang S-O., Jun S-O., Park H-I., Kee J-D., Kim K-H., Lee D-H., Aerodynamic Design Optimization of Rear Body Shapes of a Sedan for Drag Reduction, Int. J. Auto. Tech., 13(6): 905-914 (2012).
[47] Basheer I A., Hajmeer M., Artificial Neural Networks: Fundamentals, Computing, Design, and Application, J. Microbiol. Methods, 43(1): 3-31 (2000).
[48] Bixler G D., Bhushan B., Fluid Drag Reduction and Efficient Self-Cleaning with Rice Leaf and Butterfly Wing Bioinspired SurfacesNanoscale, 5(17):7685-7710 (2013).
[49] Davis L., Handbook of Genetic Algorithms (1991).
[50] Soleimanzadeh H., Niaei A., Salari D., Tarjomannejad A., Penner S., Grünbacher M., Hosseini S A., Mousavi S M., Modeling and Optimization of V2O5/TiO2 Nanocatalysts for NH3-Selective Catalytic Reduction (SCR) of NOx by RSM and ANN Techniques,  J. Environ. Manage., 238: 360-367 (2019).
[51] Mehralizadeh A., Derakhshanfard F., Ghazi Tabatabei Z., Applications of Multi-Layer Perceptron Artificial Neural Networks for Polymerization of Expandable Polystyrene by Multi-Stage Dosing Initiator,  Iran. J. Chem. Chem. Eng., (IJCCE), 41(3):   890 - 901 (2022).
[52] Zarei M., Pezhhanfar S., Shekaari Teymourloue T., Khalilzadeh M., Neural Network, Isotherm and Kinetic Study for Wastewater Treatment Using Populus Alba’s Pruned Material, Iran. J. Chem. Chem. Eng., (IJCCE), 40(6): 1868-1881 (2020)
[53] Pouranfard A., Mowla D.,Esmaeilzadeh F., An Experimental Study of Drag Reduction by Nanofluids Through Horizontal Pipe Turbulent Flow of a Newtonian Liquid, J. Ind. Eng. Chem., 20(2): 633-637 (2014).