Liquid-Liquid Extraction of Toluene from Heptane Using [EMIM][NTF2] Ionic Liquid: Experimental and Extensive Thermodynamics Study

Document Type : Research Article


Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, I.R. IRAN


The performance of the ionic liquid (1-ethyl-3methylimidazolium bis (trifluoromethylsulfonyl)imide, [EMIM][NTF2]) as a green, non-aqueous and hydrophobic solvent and sulfolane as a conventional solvent for liquid-liquid extraction of toluene from its mixture with heptane was investigated. The LLE phase behavior was predicted with the help of the UNIFAC as a predictive thermodynamic model. The interfacial tension of the studied systems was measured to investigate the effect of the dissolved toluene concentration on interfacial tension. It was revealed that the average selectivity of the systems with IL (316.752) is much higher than the systems containing sulfolane (18.661) under similar experimental conditions. For low mass fractions of toluene less than 0.4, the performance of the IL is better, whereas, for high toluene mass fractions more than 0.4, sulfolane exhibits superior performance.  


Main Subjects

[1] Zhang F., Li Y., Zhang L., Zhou Z., Sun W., Ren Z., Benzyl-and Vinyl-Functionalized Imidazolium Ionic Liquids for Selective Separating Aromatic Hydrocarbons from Alkanes, Ind. Eng. Chem. Res., 55(3): 747-756 (2016).
[2] Ebrahimi M., Ahmadi A.N., Safekordi, A.A., Fateminasab F., Mehdizadeh A., Liquid–Liquid Equilibrium Data for {heptane+ aromatic+ 1-(2-hydroxyethyl)-3-methylimidazolium bis (trifluoromethylsulfonyl) Imide ([hemim][NTf2])} Ternary Systems, J. Chem. Eng. Data, 59(2): 197-204 (2014).
[3] Meindersma G.W., Podt A., de Haan A.B., Ternary Liquid−Liquid Equilibria for Mixtures of an Aromatic+ an Aliphatic Hydrocarbons + 4-methyl-N-butylpyridinium Tetrafluoroborate, J. Chem. Eng. Data, 51(5): 1814-1819 (2006).
[4] Larriba M., Navarro P., García J., Rodríguez F., Liquid–Liquid Extraction Of Toluene From Heptane Using [emim][DCA],[bmim][DCA], and [emim][TCM] Ionic Liquids, Ind. Eng. Chem. Res., 52(7): 2714-2720 (2013).
[5] García S., García J., Larriba M., Torrecilla J.S., Rodríguez F., Sulfonate-Based Ionic Liquids in the Liquid–Liquid Extraction of Aromatic Hydrocarbons, J. Chem. Eng. Data, 56(7): 3188-3193 (2011).
[6] Domínguez I., González E.J., González R., Domínguez Á., Extraction of Benzene from Aliphatic Compounds Using Commercial Ionic Liquids as Solvents: Study of the Liquid–Liquid Equilibrium at T= 298.15 K, J. Chem. Eng. Data, 56(8): 3376-3383 (2011).
[7] Domínguez I., Calvar N., Gómez E., Domínguez Á., Liquid–Liquid Extraction of Aromatic Compounds from Cycloalkanes Using 1-Butyl-3-Methylimidazolium Methylsulfate Ionic Liquid, J. Chem. Eng. Data, 58(2): 189-196 (2013).
[8] Sakal S.A., Lu Y.Z., Jiang X.C., Shen C., Li C.X., A Promising Ionic Liquid [BMIM][FeCl4] for the Extractive Separation of Aromatic and Aliphatic Hydrocarbons, J. Chem. Eng. Data, 59(3): 533-539 (2014).
[9] Pereiro A.B., Rodríguez A., Separation of Ethanol− Heptane Azeotropic Mixtures by Solvent Extraction with an Ionic Liquid, Ind. Eng. Chem. Res., 48(3): 1579-1585 (2008).
[10] Aparicio S., Atilhan M., Karadas F., Thermophysical Properties of Pure Ionic Liquids: Review of Present Situation, Ind. Eng. Chem. Res., 49(20): 9580-9595 (2010).
[11] García S., Larriba M., García J., Torrecilla J.S., Rodríguez F., 1-Alkyl-2, 3-dimethylimidazolium Bis (Trifluoromethylsulfonyl) Imide Ionic Liquids for the Liquid–Liquid Extraction of Toluene from Heptane, J. Chem. Eng. Data, 56(8): 3468-3474 (2011).
[13] Barton, Allan FM., Solubility Parameters, Chem. Rev., 75(6): 731-753 (1975).
[14] Abbott, S. “Hansen Solubility Parameters in Practice, Complete with Ebook, Software and Data”, 4th ed. Version 4.1. (2016).
[15] Yoo B., Afzal W., Prausnitz J.M., Solubility Parameters for Nine Ionic Liquids, Ind. Eng. Chem. Res., 51(29): 9913-9917 (2012).
[16] Hansen, Charles M. “Hansen Solubility Parameters: a User's Handbook.”, CRC Press (2007).
[17] Kumar, Anil, Rakesh K. Gupta. “Fundamentals of Polymer Engineering, Revised and Expanded.” CRC Press (2003).
[18] Santiago R.S., Santos G.R., Aznar M., Liquid–Liquid Equilibrium in Ternary Ionic Liquid Systems by UNIFAC: New Volume, Surface Area and Interaction Parameters. Part I, Fluid Phase Equilibr., 295(1): 93-97 (2010).
[19] Unifac Company/Parameters of the Original UNIFAC Model; -parameters-unifac.html.
[20] Mukhopadhyay M., Dongaonkar K.R., Prediction of liquid-Liquid Equilibriums in Multicomponent Aromatics Extraction Systems by Use of the UNIFAC Group Contribution Model, Ind. Eng. Chem. Process Des. Dev, 22(3): 521-532 (1983).
[21] Bouafia Hind, Mourad Korichi. “Thermodynamic Study of Solvents Type Ionic Liquids: Application in the Substitution of Polluted Solvents.” 2015 5th International Conference on Environment Science and Engineering, Istanbul, Turkey Vol. 83 of IPCBEE (2015).
[22] Shahid M.Z., Usman M.R., Akram M.S., Khawaja S.Y., Afzal W., Initial Interfacial Tension for Various Organic–Water Systems and Study of the Effect of Solute Concentration and Temperature, J. Chem. Eng. Data, 62(4): 1198-1203 (2017).
[24] Wang P., Anderko A., Modeling Interfacial Tension in Liquid-Liquid Systems Containing Electrolytes, Ind. Eng. Chem. Res., 52(20): 6822-6840 (2013).
[25] Shain S.A., Prausnitz J.M., Thermodynamics and Interfacial Tension of Multicomponent Liquid‐Liquid Interfaces, AIChE J., 10(5): 766-773 (1964).
[28] Jacobsen N.E., “NMR Spectroscopy Explained [S.I.]”; John Wiley & Sons, Inc.: New York (2007).
[30] García S., Larriba M., García J., Torrecilla J.S., Rodríguez F., Liquid-Liquid Extraction of Toluene From Heptane Using 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) Imide Ionic Liquids, J. Chem. Eng. Data, 56(1): 113-118 (2011).
[31] Sedaghatzadegan H., Khoshsima A., Pazuki GH., Experimental Study and Thermodynamic Modeling of Separation of Toluene from Heptane by a Deep Eutectic Solvent, Journal of Separation Science and Engineering (2020).
[32] Dilek Ö., Bekri. S., Phase Diagrams for the Aqueous Solutions of Carboxylic Acid with Dipropyl Ether: Experimental and Correlated Data, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(6): 173-183 (2020).