Study on Leather Modified with Nitrogen-Phosphorus Intumescent Flame Retardant in Fat Liquoring Process

Document Type : Research Article


1 Leather and Protein Laboratory, College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P.R. CHINA

2 China (Yantai) Intellectual Property Protection Center,Shandong Yantai, 264005, P.R. CHINA


Adding flame retardant into leather is an effective way to improve the flame resistance of leather products. In this paper, a Nitrogen-Phosphorus Intumescent (NPI) flame retardant was synthesized and then added to the fatliquoring process to modify leather. The effect of NPI flame retardant on the flame-retardant properties of leather was investigated using Limiting Oxygen Index (LOI), smoke density, vertical combustion, cone calorimeter tests, and SEM. The results revealed that LOI of leather modified with NPI flame retardant increased with the increase of flame retardant. The flame and flameless combustion time of the modified leather was effectively reduced. Compared with unmodified leather, HRR of the modified leather with 6% NPI flame retardant decreased from 80.32 MJ/m2 to 63.45 MJ/m2; the peak HRR dropped from 108.71 MJ/m2 to 77.23 MJ/m2. Moreover, the fire growth index of the modified leather with 6% NPI flame retardant is close to half of that of the unmodified sample. The results certified the enhancing effect of NPI flame retardant added in the fatliquoring process on flame retardancy of leather samples.


Main Subjects

[1] Kalyanaraman C., Kanchinadham S.B.K., Vidya Devi L., Porselvam S., Rao J.R., Combined Advanced Oxidation Processes and Aerobic Biological Treatment for Synthetic Fatliquor Used in Tanneries, Ind. Eng. Chem. Res., 51(50): 16171-16181 (2012).
[2] Zhu W., Zhang Z., Chen D., Chai W., Chen D., Zhang J., Zhang C., Hao Y., Interfacial Voids Trigger Carbon-Based, All-Inorganic CsPbIBr 2 Perovskite Solar Cells with Photovoltage Exceeding 1.33 V, Nano-Micro Lett., 12: 1-4 (2020).
[3] Li X., Zhang R., Zhang X., Zhu P., Yao T., Silver‐Catalyzed Decarboxylative Allylation of Difluoroarylacetic Acids with Allyl Sulfones in Water, Chem. Asian J., 15(7): 1175-1179 (2020).
[4] Liu H., Liu X., Zhao F., Liu Y., Liu L., Wang L., Geng C., Huang P., Preparation of a Hydrophilic and Antibacterial Dual Function Ultrafiltration Membrane with Quaternized Graphene Oxide as a Modifier, J. Colloid Interface Sci., 562: 182-192 (2020).
[5] Zhong P.F., Lin H.M., Wang L.W., Mo Z.Y., Meng X.J., Tang H.T., Pan Y.M., Electrochemically Enabled Synthesis of Sulfide Imidazopyridines Via a Radical Cyclization Cascade. Green Chem., 22(19): 6334-6339 (2020).
[6] Xu Q., Zou Z., Chen Y., Wang K., Du Z., Feng J., Ding C., Bai Z., Zang Y., Xiong Y., Performance of a Novel-Type of Heat Flue in a Coke Oven Based on High-Temperature and Low-Oxygen Diffusion Combustion Technology, Fuel. 267: 117160 (2020).
[7] Yan H., Xue X., Chen W., Wu X., Dong J., Liu Y., Wang Z., Reversible Na+ Insertion/extraction in Conductive Polypyrrole-Decorated NaTi2(PO4)3 Nanocomposite with Outstanding Electrochemical Property, Appl. Surf. Sci., 530: 147295 (2020).
[8] Guo H., Li X., Zhu Q., Zhang Z., Liu Y., Li Z., Wen H., Li Y., Tang J., Liu J., Imaging Nano-Defects of Metal Waveguides Using the Microwave Cavity Interference Enhancement Method, Nanotechnol, 31(45): 455203 (2020).
[9] Guo H., Qian K., Cai A., Tang J., Liu J., Ordered Gold Nanoparticle Arrays on The Tip of Silver Wrinkled Structures for Single Molecule Detection, Sens. Actuat. Chem., 300: 126846 (2019).
[10] Zhu J., Wu P., Chen M., Kim M.J., Wang X., Fang T., Automatically Processing IFC Clipping Representation for BIM and GIS Integration at the Process Level, Appl. Sci., 10(6): 2009 (2020).
[14] Jiang Y., Li J., Li B., Liu H., Li Z., Li L., Study on a Novel Multifunctional Nanocomposite as Flame Retardant of Leather, Polym. Degrad. Stab., 115: 110-116 (2015).
[15] Sanchez-Olivares G., Sanchez-Solis A., Calderas F., Medina-Torres L., Manero O., Di Blasio A., Alongi J., Sodium Montmorillonite Effect on the Morphology, Thermal, Flame Retardant and Mechanical Properties of Semi-Finished Leather, Appl. Clay Sci., 102: 254-260 (2014).
[16] Duan B., Wang Q., Wang X., Li Y., Zhang M., Diao S., Flame Retardance of Leather with Flame Retardant Added in Retaining Process. Results Phys., 15: 102717 (2019).
[17] Lyu B., Wang Y.F., Gao D.G., Ma J.Z., Li Y., Intercalation of Modified Zanthoxylum Bungeanum Maxin Seed Oil/Stearate in Layered Double Hydroxide: Toward Flame Retardant Nanocomposites, J. Environ. Manage., 238: 235-242 (2019).
[18] Lyu B., Gao J., Ma J., Gao D., Wang H., Han X., Nanocomposite Based on Erucic Acid Modified Montmorillonite/Sulfited Rapeseed Oil: Preparation and Application In Leather, Appl. Clay Sci., 121: 36-45 (2016).
[19] Zhu W., Zhang Z., Chen D., Chai W., Chen D., Zhang J., Zhang C., Hao Y., Interfacial Voids Trigger Carbon-Based, All-Inorganic CsPbIBr 2 Perovskite Solar Cells with Photovoltage Exceeding 1.33 V, Nano-Micro Lett., 12: 1-4 (2020). 
[21] Li H., Zhang T., Tsang D.C., Li G., Effects of External Additives: Biochar, Bentonite, Phosphate, on Co-Composting For Swine Manure and Corn Straw, Chemosphere, 248: 125927 (2020).
[22] Cai C., Wu X., Liu W., Zhu W., Chen H., Qiu J.C., Sun C.N., Liu J., Wei Q., Shi Y., Selective Laser Melting of near-α Titanium Alloy Ti-6Al-2Zr-1Mo-1V: Parameter Optimization, Heat Treatment, and Mechanical Performance, J. Mater. Sci. Technol., (2020).
[23] Cai C., Tey W.S., Chen J., Zhu W., Liu X., Liu T., Zhao L., Zhou K., Comparative Study on 3D Printing of Polyamide 12 By Selective Laser Sintering and Multi Jet Fusion, J. Mater. Proc. Technol., 288: 116882 (2020).
[24] Cai C., Gao X., Teng Q., Kiran R., Liu J., Wei Q., Shi Y., Hot Isostatic Pressing of a Near α-ti Alloy: Temperature Optimization, Microstructural Evolution and Mechanical Performance Evaluation. Mater. Sci. Eng., 140426 (2020).
[26] Liu Y., Hu B., Wu S., Wang M., Zhang Z., Cui B., He L., Du M., Hierarchical Nanocomposite Electrocatalyst of Bimetallic Zeolitic Imidazolate Framework and MoS2 Sheets for Non-Pt Methanol Oxidation and Water Splitting, Appl. Catal. Environ., 258: 117970. (2019).
[27] Wang M., Hu M., Hu B., Guo C., Song Y., Jia Q., He L., Zhang Z., Fang S., Bimetallic Cerium and Ferric Oxides Nanoparticles Embedded within Mesoporous Carbon Matrix: Electrochemical Immunosensor for Sensitive Detection of Carbohydrate Antigen 19-9. Biosens. Bioelectr., 135: 22-29. (2019).
[28] Wang M., Yang L., Hu B., Liu J., He L., Jia Q., Song Y., Zhang Z., Bimetallic NiFe Oxide Structures Derived from Hollow NiFe Prussian Blue Nanobox for Label-Free Electrochemical Biosensing Adenosine Triphosphate, Biosens. Bioelectr., 113: 16-24 (2018).
[29] Jiang W., Jin F.L., Park S.J., Synthesis of a Novel Phosphorus-Nitrogen-Containing Intumescent Flame Retardant and its Application to Fabrics, J. Ind. Eng. Chem., 27: 40-43 (2015).
[31] Kordestani H., Zhang C., Shadabfar, M., Beam Damage Detection under a Moving Load Using Random Decrement Technique and Savitzky–Golay Filter. Sensors, 20(1): 243 (2020).
[32] Wang M., Hu M., Li Z., He L., Song Y., Jia Q., Zhang Z., Du M., Construction of Tb-MOF-on-Fe-MOF Conjugate as a Novel Platform for Ultrasensitive Detection of Carbohydrate Antigen 125 and Living Cancer Cells, Biosens. Bioelectr., 142: 111536 (2019).
[34] Zhang J., Liu B., A Review on the Recent Developments of Sequence-Based Protein Feature Extraction Methods, Curr. Bioinform., 14(3), 190-199 (2019).
[35] Wan C., Liu M., He P., Zhang G., Zhang F., A novel Reactive Flame Retardant for Cotton Fabric Based on a Thiourea-Phosphoric Acid Polymer, Ind. Crop Prod., 154: 112625 (2020).
[36] Wang X., Li Y., Liao W., Gu J., Li D., A New Intumescent Flame‐Retardant: Preparation, Surface Modification, and Its Application in Polypropylene, Polym. Adv. Technol., 19(8): 1055-1061 (2008).
[37] Zhang Z., Han Y., Li T., Wang T., Gao X., Liang Q., Chen L., Polyaniline/Montmorillonite Nanocomposites as an Effective Flame Retardant ad Smoke Suppressant for Polystyrene. Synth. Met., 221: 28-38 (2016).
[38] Zhang M., Luo Z., Zhang J., Chen S., Zhou Y., Effects of a Novel Phosphorus–Nitrogen Flame Retardant on Rosin-Based Rigid Polyurethane Foams, Polym. Degrad. Stab., 120: 427-434 (2015).
[41] Zhang T., Wu X., Fan X., Tsang D.C., Li G., Shen Y., Corn Waste Valorization to Generate Activated Hydrochar To Recover Ammonium Nitrogen from Compost Leachate by Hydrothermal Assisted Pretreatment, J. Environ. Manage., 236: 108-117 (2019).
[43] Zhang T., He X., Deng Y., Tsang D.C., Jiang R., Becker G.C., Kruse A., Phosphorus Recovered from Digestate By Hydrothermal Processes with Struvite Crystallization and its Potential as a Fertilizer, Sci. Total Environ., 698: 134240 (2020).
[44] Zhang T., Wu X., Li H., Tsang D.C., Li G., Ren H., Struvite Pyrolysate Cycling Technology-Assisted by Thermal Hydrolysis Pretreatment to Recover Ammonium Nitrogen from Composting Leachate, J. Clean. Prod., 242: 118442 (2020).
[45] Zhang T., He X., Deng Y., Tsang D.C., Yuan H., Shen J., Zhang S., Swine Manure Valorization for Phosphorus and Nitrogen Recovery by Catalytic–Thermal Hydrolysis and Struvite Crystallization, Sci. Total Environ., 729: 138999 (2020).