Optimization of Adsorption Parameters Using Central Composite Design for the Removal of Organosulfur in Diesel Fuel by Bentonite-Supported Nanoscale NiO-WO3

Document Type : Research Article

Authors

1 Department of Chemistry, Payame Noor University (PNU), Tehran, I.R. IRAN

2 Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, I.R. IRAN

3 Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, I.R. IRAN

Abstract

Desulfurization using porous materials is based on the capability of a solid sorbent to selectively adsorb organic sulfur-containing compounds. In the present study, different sorbents were prepared by varying the NiO/WO3 loadings onto bentonite for the removal of sulfur from commercial diesel fuel containing approximately 100 ppm total sulfur (S). X-Ray Diffraction (XRD), Fourier Transform InfraRed (FT-IR) spectroscopy, and Scanning Electron Microscopy (SEM) showed the ability of modified bentonite to adsorb dibenzothiophene (DBT) depends strongly on the surface chemistry, particularly on the presence of basic oxygen-containing groups and acid content. A Plackett–Burman Design (PBD) was chosen as a screening method to estimate the relative influence of the factors that could have an influence on the analytical response. The significant variables included: sorbent amount, feed volume, extraction solvent kind, and its volume were optimized using Central Composite Design (CCD). 93.5% removal of sulfur was observed with NiO@WO3@bentonite.

Keywords

Main Subjects


[1]    Kaufmann T.G., Kaldor A., Stuntz G.F., Kerby M.C., Ansell L.L., Catalysis Science and Technology for Cleaner Transportation Fuels, Catal. Today, 62(1): 77-90 (2000).
[4] Jiang M., Ng F.T.T., Rahman A., Patel V., Flow Calorimetric and Thermal Gravimetric Study of Adsorption of Thiophenic Sulfur Compounds on NaY Zeolite, Thermochim. Acta, 434(1): 27-36 (2005).
[7] Mikhail S., Zaki T., Khalil L., Desulfurization by an Economically Adsorption Technique, Appl. Catal. A-Gen., 227(1): 265-278 (2002).
[8] Park J.G., Ko C.H., Yi K.B., Park J.-H., Han S.-S., Cho S.-H., Kim J.-N., Reactive Adsorption of Sulfur Compounds in Diesel on Nickel Supported on Mesoporous Silica, Appl. Catal. B, 81(3): 244-250 (2008).
[9] Hernández-Maldonado A.J., Yang F.H., Qi G., Yang R.T., Desulfurization of Transportation Fuels by Π-Complexation Sorbents: Cu(I)-, Ni(II)-, and Zn(II)-zeolites, Appl. Catal. B, 56(1): 111-126 (2005).
[12] Pan D.-q., Fan Q.-h., Li P., Liu S.-p., Wu W.-s., Sorption of Th(IV) on Na-bentonite: Effects of pH, Ionic Strength, Humic Substances and Temperature, Chem. Eng., 172(2): 898-905 (2011).
[13] Wang S., Dong Y., He M., Chen L., Yu X., Characterization of GMZ Bentonite and Its Application in the Adsorption of Pb(II) from Aqueous Solutions, Appl. Clay Sci., 43(2): 164-171 (2009).
[14] Davoodnia A., Nakhaei A., Basafa S., Tavakoli-Hoseini N., Investigating Effect of Cerium (IV) Sulfate Tetrahydrate as Reusable and Heterogeneous Catalyst for the One-Pot Multicomponent Synthesis of Polyhydroquinolines, Adv. J. Chem. A, 1(2. pp. 66-126): 96-104 (2018).
[15] Fan H., Shangguan J., Liang L., Shen F., Li C., Reduction Behavior of Iron Oxide Sorbent and Its Effect on Sulfidation, Energy Fuels, 24(7): 3784-3788 (2010).
[16] Renedo M.J., González F., Pesquera C., Fernández J., Study of Sorbents Prepared from Clays and CaO or Ca(OH)2 for SO2 Removal at Low Temperature, Ind. Eng. Chem. Res., 45(10): 3752-3757 (2006).
[17] Ersoy-Mericboyu A., Removal of Sulphur Dioxide from Flue Gases, Energy Sources, 21(7): 611-619 (1999).
[18] Nakhaei A., Shojaee S., Yaghoobi E., Ramezani S., Fast and Green Synthesis of 3, 4-dihydropyrimidin-2 (1h)-Ones And-Thiones Using Nanometasilica Disulfuric Acid as Recyclable Catalyst in Water, Heterocycl. Lett., 7(2): 323-331 (2017).
[19] Froehner S., Machado K.S., Falcão F., Adsorption of Dibenzothiophene by Vermiculite in Hydrophobic Form, Impregnated with Copper Ions and in Natural Form, Water Air Soil Pollut., 209(1-4): 357-363 (2010).
[20] Wu T., Yan X., Cai X., Tan S., Li H., Liu J., Yang W., Removal of Chattonella Marina with Clay Minerals Modified with a Gemini Surfactant, Appl. Clay Sci., 50(4): 604-607 (2010).
[21] Gu L., Xu J., Lv L., Liu B., Zhang H., Yu X., Luo Z., Dissolved Organic Nitrogen (DON) Adsorption by Using Al-Pillared Bentonite, Desalination, 269(1): 206-213 (2011).
[23] Rezala H., Khalaf H., Valverde J.L., Romero A., Molinari A., Maldotti A., Photocatalysis with Ti-Pillared Clays for the Oxofunctionalization of Alkylaromatics by O2, Appl. Catal. A-Gen. , 352(1): 234-242 (2009).
[24] Wang J., Xu F., Xie W.-J., Mei Z.-J., Zhang Q.-Z., Cai J., Cai W.-m., The Enhanced Adsorption of Dibenzothiophene onto Cerium/Nickel-Exchanged Zeolite Y, J. Hazard. Mater., 163(2): 538-543 (2009).
[25] Griffith C.S., Luca V., Ion-Exchange Properties of Microporous Tungstates, Chem. Mater., 16(24): 4992-4999 (2004).
[26] Griffith C.S., Luca V., Hanna J.V., Pike K.J., Smith M.E., Thorogood G.S., Microcrystalline Hexagonal Tungsten Bronze. 1. Basis of Ion Exchange Selectivity for Cesium and Strontium, Inorg. Chem., 48(13): 5648-5662 (2009).
[27] Darvishi Z., Morsali A., Synthesis and Characterization of Nano-Bentonite by Sonochemical Method, Ultrason. Sonochem., 18(1): 238-242 (2011).
[28] Holford I.C.R., Wedderburn R.W.M., Mattingly G.E.G., A Langmuir Two-Surface Equation as a Model for Phosphate Adsorption by Soils, J. Soil Sci., 25(2): 242-255 (1974).
[31] Wu F.-C., Tseng R.-L., Juang R.-S., Role of pH in Metal Adsorption from Aqueous Solutions Containing Chelating Agents on Chitosan, Ind. Eng. Chem. Res., 38(1): 270-275 (1999).
[32] Inbaraj B.S., Sulochana N., Mercury Adsorption on a Carbon Sorbent Derived from Fruit Shell of Terminalia Catappa, J. Hazard. Mater., 133(1): 283-290 (2006).
[34] Liu X.-H., Luo X.-H., Lu S.-X., Zhang J.-C., Cao W.-L., A Novel Cetyltrimethyl Ammonium Silver Bromide Complex and Silver Bromide Nanoparticles Obtained by the Surfactant Counterion, J. Colloid Interface Sci., 307(1): 94-100 (2007).
[35] Ayodele O.B., Lim J.K., Hameed B.H., Pillared Montmorillonite Supported Ferric Oxalate as Heterogeneous Photo-Fenton Catalyst for Degradation of Amoxicillin, Appl. Catal. A-Gen., 413-414: 301-309 (2012).
[36] Tireli A.A., Marcos F.C.F., Oliveira L.F., Guimarães I.d.R., Guerreiro M.C., Silva J.P., Influence of Magnetic Field on the Adsorption of Organic Compound by Clays Modified with Iron, Appl. Clay Sci., 97-98: 1-7 (2014).
[39] Tyagi B., Chudasama C.D., Jasra R.V., Determination of Structural Modification in Acid Activated Montmorillonite Clay by FT-IR Spectroscopy, Spectrochim. Acta A, 64(2): 273-278 (2006).
[40] Kanthimathi M., Dhathathreyan A., Nair B.U., Nanosized Nickel Oxide using Bovine Serum Albumin as Template, Mater. Lett., 58(22): 2914-2917 (2004).
[41] Nakhaei A., Ramezani S., Shams-Najafi S.J., Farsinejad S., Nano-Fe3O4@ ZrO2-SO3H as Highly Efficient Recyclable Catalyst for the Green Synthesis of Fluoroquinolones, Lett. Org. Chem., 15(9): 739-746 (2018).
[43] Kennedy M., Krouse D., Strategies for Improving Fermentation Medium Performance: A Review, J. Ind. Microbiol. Biotechnol., 23(6): 456-475 (1999).
[44] Plackett R.L., Burman J.P., The Design of Optimum Multifactorial Experiments, Biometrika, 33(4): 305-325 (1946).
[45] Sharif K.M., Rahman M.M., Azmir J., Mohamed A., Jahurul M.H.A., Sahena F., Zaidul I.S.M., Experimental Design of Supercritical Fluid Extraction – A Review, J. Food Eng., 124: 105-116 (2014).
[47] Tarley C.R.T., Silveira G., dos Santos W.N.L., Matos G.D., da Silva E.G.P., Bezerra M.A., Miró M., Ferreira S.L.C., Chemometric Tools in Electroanalytical Chemistry: Methods for Optimization Based on Factorial Design and Response Surface Methodology, Microchem. J., 92(1): 58-67 (2009).