Removal of Acid Red 33 from Aqueous Solution Using Nanoscale Zero-Valent Iron Supported on Activated Carbon: Kinetic, Isotherm, Thermodynamic Studies

Document Type : Research Article

Authors

Department of Chemistry, North Tehran Branch, Islamic Azad university, Tehran, I.R. IRAN

Abstract

In this study, zero-valent iron nanoparticles immobilized on activated carbon (nZVI-AC) were synthesized to rapidly remove Acid Red 33 (AR 33) as an azo dye from an aqueous medium. This novel nanocomposite was characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), X-Ray Diffraction (XRD), and Fourier Transform InfraRed (FT-IR)spectroscopy. The effect of experimental variables, including adsorbent dosage, pH, initial concentration of AR 33, and temperature was studied to select the optimum conditions for maximum removal efficiency. The optimal conditions were achieved at an adsorbent dosage of 0.2 g/L, pH=3, initial dye concentration of 10 mg/L, and a temperature of 313 K. Isotherms and kinetics studies indicated that Langmuir isotherm with regression determination (R2) of 0.9914 and pseudo-first-order model with R2=0.9922 fitted well to the experimental data. The calculated thermodynamic parameters such as ΔGº, ΔHº, and ΔSº revealed that the adsorption process was spontaneous and endothermic. The reusability of the nZVI-AC was investigated and it found that this adsorbent had a potential ability to remove AR 33 dye.

Keywords

Main Subjects


[2] Nadeem Zafar M., Dar Q., Nawaz F., Effective Adsorptive Removal of Azo Dyes over Spherical ZnO Nanoparticles, J. Mater. Res. Technol., 8: 713-725 (2019).
[3] Yusof N.H., Foo  K.Y., Hameed B.H., Hazwan Hussin M., Lee H.K., Sabar  S., One-Step Synthesis of Chitosan-Polyethyleneimine with Calcium Chloride as Effective Adsorbent For Acid Red 88 Removal, Int. J. Biol. Macromol. (2019).
[4] Pourabadeh A., Baharinikoo L., Nouri A., Mehdizadeh B., Shojaei S., The Optimisation of Operating Parameters of Dye Removal: Application of Designs of Experiments, Int J Environ Anal Chem. (2019).
[5] Shojaei S., Shojaei, S., Experimental Design and Modeling of Removal of Acid Green 25 Dye by Nanoscale Zero-Valent Iron, Euro-Mediterr J. Environ Integr, 2: 15 (2017).
[7] Nyoo Putro J., Permatasari Santoso  Sh., Edi Soetaredjo F., Ismadji  S., Hsu Ju  Y., Nanocrystalline Cellulose from Waste Paper: Adsorbent for Azo Dyes Removal, Environmental Nanotechnology. Monit. Manage., 12: 100260 (2019).
[8] Cintra Fernandes N., Barroso Brito  L., Goncalves Costa G., FleuryTaveira S., SoaresCunha–Filho M.S., RodriguesOliveira G.A., Neves Marretoa R., Removal of Azo Dye Using Fenton and Fenton-Like Processes: Evaluation of Process Factors by Box–Behnken Design and Ecotoxicity Tests, Chem. Biol. Interact., 291: 47-54 (2018).
[10] Al-Aseeri  M., Bu-Ali  Q., Haji Sh., Al-Bastaki  N., Removal of Acid Red and Sodium Chloride Mixtures From Aqueous Solutions Using Nanofiltration, Desalination. 206: 407–413 (2007).
[11] Anantha  M.S., Olivera  Sh., Hu  Ch., Jayanna  B.K., Reddy  N., Venkatesh  K., Muralidhara  H.B., Naidu  R., Comparison of the Photocatalytic, Adsorption and Electrochemical Methods for the Removal of Cationic Dyes from Aqueous Solutions, Environ. Technol. Innovation, 17: 100612 (2020).
[12] Mais L., Vacca A., Mascia M., Maria Usai E., Tronci S., Palmas  S., Experimental Study on the Optimisation of Azo-Dyes Removal by Photo-Electrochemical Oxidation with TiO2 Nanotubes, Chemosphere, 248:125938 (2020).
[13] Kasperchik V.P., Yaskevich A.L., Bil’dyukevich A.V., Wastewater Treatment for Removal of Dyes by Coagulation and Membrane Processes, Pet. Chem., 52: 545–556 (2012).
[14]  Hyun Kim T., Park Ch., Yang J., Kim S., Comparison of Disperse and Reactive Dye Removals by Chemical Coagulation and Fenton Oxidation, J. Hazard. Mater., 112: 95–103 (2004).
[15] Siva Mohan Reddy  G., Bhaumik  M., Maity  A., Sinha Ray  S., Removal of Congo Red From Aqueous Solution by Adsorption Using Gum Ghatti and Acrylamide Graft Copolymer Coated with Zero Valent Iron, Int. J. Biol. Macromol. 149: 21-30 (2020).
[16] Wang  Sh., Yun Zhai  Y.,  Gao  Q., Jun Luo  W.,  Xia  H.,  Gang Zhou  Ch., Highly Efficient Removal of Acid Red 18 from Aqueous Solution by Magnetically Retrievable Chitosan/Carbon Nanotube: Batch Study, Isotherms, Kinetics, and Thermodynamics, J. Chem. Eng. Data., 59: 39-51 (2014).
[17] Shojaei S., Ahmadi J., Davoodabadi Farahani M., Mehdizadeh B., Pirkamali M., Removal of Crystal Violet Using Nanozeolite-X from Aqueous Solution: Central Composite Design Optimization Study, J. Water Environ. Nanotechnol, 4: 40-47 (2019).
[18] Mehr H.V., Saffari J., Mohammadi S.Z., Shojaei S., The Removal of Methyl Violet 2B Dye Using Palm Kernel Activated Carbon: Thermodynamic and Kinetics Model, Int. J. Environ. Sci. Technol., 17: 1773–1782 (2020).
[20] Meng B., Guo Q., Men X., Ren Sh., Jin W., Shen B., Modified Bentonite by Polyhedral Oligomeric Silsesquioxane and Quaternary Ammonium Salt and Adsorption Characteristics for Dye, J. Saudi Chem. Soc., 24: 334-344 (2020).
[21] Shabaan O.A.,  Jahin H.S., Mohamed  G.G., Removal of Anionic and Cationic Dyes from Wastewater by Adsorption Using Multiwall Carbon Nanotubes, Arabian J. Chem., 13: 4797–4810 (2020).
[22] Bhargavi R.J., Maheshwari U., Gupta S., Synthesis and Use of Alumina Nanoparticles as an Adsorbent for the Removal of Zn (II) and CBG Dye from Wastewater, Int. J. Ind. Chem., 6: 31–41 (2015).
[25] Almeelbi T., Bezbaruah A., Aqueous Phosphate Removal Using Nanoscale Zero-Valent Iron, J. Nanopart. Res., 14: 900 (2012).
[26] Siciliano  A., Limonti  C., Nanoscopic Zero-Valent Iron Supported on MgO for Lead Removal from Waters, Water, 10: 404-418 (2018).
[27] Stefaniuk M., Oleszczuk P., Sik Ok Y., Review on Nano Zerovalent Iron (nZVI): From Synthesis to Environmental Applications, Chem. Eng. J., 287: 618-632 (2016).
[28] Araujo G.X., Costa da Rocha R.D., Rodrigues M. B., Preparation and Application of Zero Valent Iron Immobilized in Activated Carbon for Removal of Hexavalent Chromium from Synthetic Effluent, Int. J. Appl. Sci. Technol., 14: 1-9 (2019).
[32] Sohrabi  M. R.,  Mansouriieh  N.,  Khosravi M.,  Zolghadr  M., Removal of Diazo Dye Direct Red 23 From Aqueous Solution Using Zero-Valent Iron Nanoparticles Immobilized on Multi-Walled Carbon Nanotubes, Water Sci. Technol., 71: 1367–1441 (2015).
[33] Pourabadeh A., Baharinikoo L., Shojaei S., Mehdizadeh B., Davoodabadi Farahani M., Shojaei S., Experimental Design and Modelling of Removal of Dyes Using Nano-Zero-Valent Iron: A Simultaneous Model, Int. J. Environ. Anal. Chem. 100: 1707-1719 (2020).
[35] Jin  X., Zhuang   Z., Yu  B.,  Chen  Zh., Chen  Z., Functional Chitosan-Stabilized Nanoscale Zero-Valent Iron Used to Remove Acid Fuchsine with the Assistance of Ultrasound, Carbohydr. Polym., 136: 1085-1090 (2016).
[36] Venkatapathy  R., Bessingpas  D.G., Canonica  S., Bessingpas  D.G., Perlinger  J.A.,  Kinetic Models for Trichloroethylene Transformation by Zero-Valent Iron, Appl. Catal. B. ,37: 139-159 (2002).
[37] Sabouri M.R., Sohrabi M.R., Zeraatkar Moghaddam A., A Novel and Efficient Dyes Degradation Using Bentonite Supported Zero‐Valent Iron‐Based Nanocomposites, Chemistry Select., 5: 369-378 (2020).
[38] Veloso C.H., Filippov L.O., Filippova I.V., Ouvrard  S., Araujo A.C., Adsorption of Polymers onto Iron Oxides: Equilibrium Isotherms, J. Mater. Res. Technol., 9: 779–788 (2020).
[41] Li Chen  X., Li  F., Jie Xie  X.,  Zh. Li, Zh.,  Chen  L.,  Nanoscale Zero-Valent Iron and Chitosan Functionalized Eichhornia Crassipes Biochar for Efficient Hexavalent Chromium Removal, Int. J. Environ. Res. Public Health., 16: 3046-3061 (2019).
[43] Naushad M., Abdullah Alqadami A., Abdullah AlOthman Z., Alsohaimi I.H., Algamdi M.S., Aldawsari A.M., Adsorption Kinetics, Isotherm and Reusability Studies for the Removal of Cationic Dye from Aqueous Medium Using Arginine Modified Activated Carbon, J. Mol. Liq., 293: 111442 (2019).
[44] Abdel-Mohsen  A.M., Jancar J.,  Kalina L., Hassan Asaad F., Comparative Study of Chitosan and Silk Fibroin Staple Microfibers on Removal of Chromium (VI): Fabrication, Kinetics and Thermodynamic Studies, Carbohydr. Polym., 234: 115861(2020).
[45] Du Y., Dai M., Cao J., Peng  Ch., Ali I., Naz I., Li  J., Efficient Removal of Acid Orange 7 Using a Porous Adsorbent-Supported Zero-Valent Iron as a Synergistic Catalyst in Advanced Oxidation Process, Chemosphere, 244: 125522 (2020).
[46] Perez-Calderon  J., Santos  M.V.,  Zaritzky  N.,  Reactive RED 195 Dye Removal Using Chitosan Coacervated Particles as Bio-Sorbent: Analysis of Kinetics, Equilibrium and Adsorption Mechanisms, J. Environ. Chem. Eng., 6:6749-6760 (2018).
[47] Kadhim Obaid  M.,  Chuah Abdullah  L., Idan  I. J., Removal of Reactive Orange 16 Dye from Aqueous Solution by Using Modified Kenaf Core Fiber, J. Chem. 2016: 1-8 (2016).