Drying Characteristics, Specific Energy Consumption, Qualitative Properties, Total Phenol Compounds, and Antioxidant Activity During Hybrid Hot Air-Microwave-Rotary Drum Drying of Green Pea

Document Type : Research Article


1 Department of Biosystems Engineering, College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

2 University of Mohaghegh Ardabili


This study is aimed to investigate the effect of a Hybrid Hot air-Microwave- Rotary Drum (HMRD)  dryer on the thermal properties, quality, and nutritional characteristics of green pea under different operational conditions. The experiments were conducted under different air temperatures (40, 55, and 70 °C), microwave power (90, 270, 450, and 630 W), and drum rotation speeds (5, 10, and 15 rpm). The thermal properties (e.g. drying time, effective moisture diffusion coefficient, activation energy, and specific energy consumption), quality features (color, shrinkage, and rehydration ratio), and nutritional properties (antioxidant activity and total phenol content) were determined. The results indicated that by increasing the microwave power, air temperature, and drum rotation speed, the drying time will decline. The highest diffusion coefficient and energy consumption were determined as 5.0410-11 m2/s and 109.91 MJ/kg, respectively. The lowest changes in color, shrinkage, and rehydration were calculated as 41.34, 24.08%, and 1.57. The highest total phenol (14.02 mg GAE/g d.w) and antioxidant (85.86%) were obtained. Thus the newly designed dryer can be employed for drying granular products and lead to satisfactory results.


Main Subjects

[1] Senapati A.K., Varshney A.K., Sharma V.K., Dehydration of Green Peas: A Review, Int. J. Chem. Stud., 7(2): 1088-1091 (2009).
[2] Shete Y.V., More M.M., Deshmukh S.S., Karne S.C. Effects of Pre-Treatments and Drying Temperatures on the Quality of Dried Green Peas, Int. J. Agri. Eng.,  8(2): 220-226 (2015).
[3] Senapati A.K., Varshney A.K., Sharma V.K. Mathematical Modeling of Dried Green Peas: A Review, Int. J. Curr. Microbiol. Appl. Sci., 8(6): 3232-3239 (2019)
[4] Chahbani A., Fakhfakh N., Balti M.A., Mabrouk M., Elhatmi H., Zouari N., Kechaou N., Microwave Drying Effects on Drying Kinetics, Bioactive Compounds and Antioxidant Activity of Green Peas (Pisum sativum L.), Food Biosci., 25: 32-38 (2018).
[5] Doymaz I., Kocayigit F., Drying and Rehydration Behaviors of Convection Drying of Green Peas, Drying Technol., 29: 1273-1282 (2011).
[6] Ada R.,Ceyhan E., Çelik S.A., Harmankaya M., Özcan M.M., Fatty Acid Composition and Mineral Contents of Pea Genotype Seeds, Iran. J. Chem. Chem. Eng. (IJCCE), 38(2): 153-158 (2019).
[7] Lenaerts S., Borght M.V.D., Callensc A, Campenhout L.V., Suitability of Microwave Drying for Mealworms (Tenebrio Molitor) as Alternative to Freeze Drying: Impact on Nutritional Quality and Colour, Food Chem., 254: 129-136 (2018).
[8] Onwude D.I., Hashim N., Chen G., Recent Advances of Novel Thermal Combined Hot Air Drying of Agricultural Crops, Tren Food Sci Technol., 57: 132-145 (2016).
[9] Bualuang O., Onwude D.I., Uso A., Peerachaakkarachai K., Mora P., Dulsamphan S., Sena P., Determination of Drying Kinetics, Some Physical, and Antioxidant Properties of Papaya Seeds Undergoing Microwave Vacuum Drying, J. Food Process Eng., 62(6): e13176 (2019).
[10] Wang D.D., Zhang M., Wang Y.C., Martynenko A., Effect of Pulsed-Spouted Bed Microwave Freeze Drying on Quality of Apple Cuboids, Food Bioprocess Technol., 11: 941–952 (2018).
[11] Jamali S.N., Kashaninejad M., Amirabadi A.A., Aalami M., Khomeiri M., Kinetics of Peroxidase Inactivation, Color and Temperature Changes During Pumpkin (Cucurbita moschata) Blanching Using Infrared Heating, LWT, 93: 456-462 (2018).
[13]  Taghinezhad E.,  Rasooli V.R.,  Kaveh M., Modelling and Optimization of Hybrid HIR Drying Variables for Processing of Parboiled Paddy Using Response Surface Methodology, Iran. J. Chem. Chem. Eng. (IJCCE), 38(4): 251-260 (2019)
[14] Ashtiani S.H.M., Sturm B., Nasirahmadi A. Effects of Hot-Air and Hybrid Hot Air-Microwave Drying on Drying Kinetics and Textural Quality of Nectarine Slices, Heat Mass Transfer., 54(4): 915-927 (2018).
[15] Dai J-W., Xiao H-W., Zhang L-H., Chu M-Y., Qin W., Wu Z-J., Han D-D., Li Y-L., Liu Y-W., Yin P-F., Drying Characteristics and Modeling of Apple Slices During Microwave Intermittent Drying, J. Food Process Eng., 42(6): e13212 (2019)
[16] Qi C., Huang Y., Ling X., Duan L., Experimental Study on Drying Characteristic of Corncob in Plate Rotary Heat Exchanger, J. Food Process Eng., 42(4): e13059 (2019).
[17] Yi J., Li X., He J., Duan X. Drying Efficiency and Product Quality of Biomass Drying: A Review. Drying Technol. [In Press].
[18] Horuz E., Bozkurt H., Karatas H., Maskan M., Drying Kinetics of Apricot Halves in a Microwave-Hot Air Hybrid Oven, Heat Mass Transfer, 53(6): 2117-2127 (2017).
[20] Babiker E.E., Almusallam I.A., Uslu N., Al-Juhaimi F.Y.,  Özcan M.M., Ghafoor K., Ahmed I.A.M., Effect of Microwave Treatment on Oil Contents, Fatty Acid Compositions and Mineral Contents of Hazelnut Varieties, J. Oleo Sci., 69(9): 965-971 (2020)
[21] Firouzi S., Alizadeh M.R., Haghtalab D. Energy Consumption and Rice Milling Quality upon Drying Paddy with a Newly-Designed Horizontal Rotary Dryer, Energy, 119: 629-636 (2017).
[23] Kar S., Mujumdar A.S., Sutar, P.P.  Aspergillus Niger Inactivation in Microwave Rotary Drum Drying of Whole Garlic Bulbs and Effect on Quality of Dried Garlic Powder, Drying Technol., 37(12): 1528-1540 (2019).
[24] Kaensup W., Chutima S., Wongwises S. Experimental Study on Drying of Chilli in a Combined Microwave-Vacuum-Rotary Drum Dryer, Drying Technol, 20(10): 2067–2079 (20002)
[25] Tarhan S., Telci I., Tuncay M.T., Polatci H., Product Quality and Energy Consumption When Drying Peppermint by Rotary Drum Dryer, Ind. Crop. Prod., 32: 420–427 (2010).
[27] Galaz P., Valdenegro M., Ramírez C., Nunez H., Almonacid S., Simpson R., Effect of Drum Drying Temperature on Drying Kinetic and Polyphenol Contents in Pomegranate Peel, J. Food Eng., 208: 19-27 (2017).
[29] Chauhan A.K.S., Srivastava A.K., Optimizing Drying Conditions for Vacuum-Assisted Microwave Drying of Green Peas (pisum sativum l.), Drying Technol, 27: 761–769 (2009).
[30] Zielinska M., Zapotoczny P., Alves-Filho O., Eikevik T.M., Blaszczak W., A Multi-Stage Combined Heat Pump and Microwave Vacuum Drying of Green Peas, J. Food Eng., 115: 347–356 (2013).
[31] Gao X., Wang J., Wang S.,  Li Z. Modelling of Drying Kinetics of Green Peas by Reaction Engineering Approach, Drying Technol., 34(4), 437-444 (2016).
[32] Jadhav D.B., Visavale G.L., Sutar N., Annapure U.S., Thorat B.N., Studies on Solar Cabinet Drying of Green Peas (Pisum sativum), Drying Technol., 28: 600-607 (2010)
[33] Momenzadeh L., Zomorodian A., Mowla D., Applying Artificial Neural Network For Drying Time Prediction of Green Pea in a Microwave Assisted Fluidized Bed Dryer, J. Agrc. Sci. Technol., 14: 513-522 (2012).
[34] Honarvar B., Mowla D., Safekori A.A., Physical Properties of Green Pea in an Inert Medium FBD Dryer Assisted by IR Heating, Iran. J. Chem. Chem. Eng. (IJCCE), 30(1): 107-118 (2011).
[35] Torki Harchegan M., Sadeghi M., Ghanbarian D., Moheb A., Dehydration Characteristics of Whole Lemons in a Convective Hot Air Dryer, Iran. J. Chem. Chem. Eng. (IJCCE), 35(3): 65–73 (2016).
[36] Dutta B., Raghavan G.S.V., Dev S.R.S., Liplap P., Murugesan R., Anekella K., Kaushal T., A Comparative Study on the Effects of Microwave and High Electric Field Pretreatments on Drying Kinetics and Quality of Mushrooms, Drying Technol, 30(8): 891-897 (2012).
[37] Kaveh M., Jahanbakhshi A., Abbaspour‐Gilandeh Y., Taghinezhad E., Moghimi M.B.F., The Effect of Ultrasound Pre‐Treatment on Quality, Drying, and Thermodynamic Attributes of Almond Kernel under Convective Dryer Using ANNs and ANFIS Network, J. Food Process Eng., 41(7): e12868 (2018).
[40] Lagnika C., Jiang N., Song J., Li D., Liu C., Huang J., Wei Q., Zhang M., Effects of Pretreatments on Properties of Microwave-Vacuum Drying of Sweet Potato Slices, Drying Technol., 37(15): 1901-1914 (2018).
[41] Ozcan M.M., Juhaimi F.A., Ahmed I.A.M., Uslu N., Babiker E.E., Ghafoor K., Effect of Microwave and oven Drying Processes on Antioxidant Activity, Total Phenol and Phenolic Compounds of Kiwi and Pepino Fruits, J Food Sci. Technol., 57: 233-242 (2020).
[43] Ghafoor K., Ahmeda I.A.M., Özcan M.M.,
Al-Juhaimi F.Y.,  Babiker E.E., Azmi I. U. An evaluation of Bioactive Compounds, Fatty Acid Composition And Oil Quality of Chia (Salvia hispanica L.) Seed Roasted at Different Temperatures, Food Chem., 333: 127531 (2020).
[45] Ilter I., Akyıl S., Devseren E., Okut D., Koç M., Ertekin F.K., Microwave and Hot Air Drying of Garlic Puree: Drying Kinetics and Quality Characteristics, Heat Mass Transfer, 54(7): 2101–2112 (2018)
[46] Jebri M., Desmorieux H., Maaloul A., Saadaoui E., Romdhane M. Drying of Salvia Officinalis L. by hot Air and Microwaves: Dynamic Desorption Isotherms, Drying Kinetics and Biochemical Quality, Heat Mass Transfer, 55(4): 1143-1153 (2019).
[47] Torki-Harchegani M., Ghanbarian D., Pirbalouti A.G., Sadeghi M., Dehydration Behaviour, Mathematical Modelling, Energy Efficiency and Essential Oil Yield of Peppermint Leaves Undergoing Microwave and Hot Air Treatments, Renew Sustain Energy Rev., 58: 407-418 (2016).
[50] Parizi S.N., Beheshti B, Roustapour O.R., Investigation of Pistachio (Kalleh Ghoochi v.) Drying Kinetics in a New Intelligent Rotary Dryer Under Vacuum, Food. Sci. Techno.,  54(13): 135-142 (2016). [In Farsi].
[51] Malekjani N., Emam-Djomeh Z., Hashemabadi S.H., Askari G.R., Modeling Thin Layer Drying Kinetics, Moisture Diffusivity and Activation Energy of Hazelnuts During Microwave-Convective Drying, Int. J. Food Eng., 14(2):   -    (2017).
[53] Hazervazifeh A., Nikbakht A.M., Moghaddam P.A., Novel Hybridized Drying Methods for Processing
of Apple Fruit: Energy Conservation Approach
, Energy, 103: 679-687 (2016)
[55] Golmohammadi M., Foroughi Dahr M., Rajabi Bamaneh M., Shojamoradi A.R., Hashemi S.J., Study on Drying Kinetics of Paddy Rice: Intermittent Drying, Iran. J. Chem. Chem. Eng. (IJCCE), 35(3): 105-117 (2016).
[56] Pandey O.P.,  Mishra B.K., Misra A., Comparative Study of Green Peas Using with Blanching & without Blanching Techniques, Inf. Process Agri., 6(2): 285-296 (2019).
[57] Kaveh M., Amiri Chayjan R., Taghinezhad E., Sharabiani V.R., Motevali A. Evaluation of Specific Energy Consumption and GHG Emissions for Different Drying Methods (Case study: Pistacia Atlantica), J. Clean Produc., 529: 120963 (2020)
[59] Horuz E., Maskan M. Hot Air and Microwave Drying of Pomegranate (Punica granatum L.) Arils, J. Food Sci. Technol., 52(1): 285-293 (2015).
[60] Nguyen T.K., Mondor M., Ratti C., Shrinkage of Cellular Food During Air Drying, J. Food Eng., 230: 8-17 (2018)
[62] Abbaspour-Gilandeh, Y., Kaveh M., Aziz M., Ultrasonic-Microwave and Infrared Assisted Convective Drying of Carrot: Drying Kinetic, Quality and Energy Consumption. Appl. Sci., 10, 6309 (2020).
[63] Aydogdu A., Sumnu G., Sahin S., Effects of Microwave-Infrared Combination Drying on Quality of Eggplants, Food Bioproc. Technol., 8(6): 1198-1210 (2015).
[64] Dehghannya J., Farshad P., Heshmati M.K., Three-Stage Hybrid Osmotic–Intermittent Microwave–Convective Drying of Apple at Low Temperature and Short Time, Drying Technol, 36(16): 1982-2005 (2018).
[65] Kaveh M., Abbaspour-Gilandeh, Y. Impacts of Hybrid (Convective-infrared-rotary drum) Drying on the Quality Attributes of Green Pea, J. Food Process Eng., 43(7): e 13424 (        ).
[66] Azam S.M.R., Zhang M., Law C.L., Mujumdar A.S. Effects of Drying Methods on Quality Attributes of Peach (Prunus persica) Leather, Drying Technol., 37(3): 341-351 (2019).
[67] Abbaspour-Gilandeh Y., Kaveh M., Fatemi H., Hernández-Hernández, J. L., Fuentes-Penna A., Hernández-Hernández M. Evaluation of the Changes in Thermal, Qualitative, and Antioxidant Properties of Terebinth (Pistacia atlantica) Fruit Under Different Drying Methods. Agronomy, 10: 1378 (2020).
[68] Turkiewicz I. P, Wojdyło A., Lech K., Tkacz K.,  Nowicka P., Influence of Different Drying Methods on the Quality of Japanese Quince Fruit, LWT, 114: 108416 (2019).