Clean Hydrogen Energy and Electric Power Production with CO2 Capturing by Using Coal Gasification

Document Type : Research Article


Department of Chemical Engineering, University of Engineering and Technology, G.T. Rd, Lahore 54890, PAKISTAN


Clean hydrogen is the major energy carrier for power production. The conversion of CO to CO2 and zero emission during hydrogen energy production causes high capital cost. It is a matter of prestige to optimize the process in order to make zero emission and cost effective production of clean hydrogen energy and electric power. In this era, coal gasification is the most promising technology for the clean hydrogen energy and electric power production with simultaneously capturing of CO2. The experimental set up used in this scheme consists of Fluidized Bed Coal Gasifier (FBCG), syngas treatment unit, electricity generation unit, CO2 capturing unit and clean hydrogen adsorption unit. This paper shows the analysis of low sulphur Makarwal (Pakistan) coal. The Oxygen to Steam (O/S) ratio is optimized in order to produce syngas efficiently in the FBCG. The desulphurization unit reduces the H2S contents below than 1ppm. In this experimental plant, the feed rate 37.5 tons/hr of coal is used and clean hydrogen is produced at the rate of 1.30-1.40 tons/h.


[1] “World Energy Outlook.”, International Energy Agency IEA 9 Rue de la Fédération 75739 Paris Cedex 15, France, WEO:IEA (2015).
[2] Demirba S.A., Global Renewable Energy Resources, Energy Sources, 28: 779-792 (2006).
[3] Demirba S.A., Energy Facilities and Nuclear Power Program by 2020 in Turkey, Energy Sources, 23: 401-415 (2001).
[4] World Energy Outlook., International Energy Agency, IEA 9 Rue de la Fédération 75739 Paris Cedex 15, France, WEO:IEA (2008).
[5] Gary J., Stiegel., Massood, Ramezan., Hydrogen from Coal Gasification: An Economical Pathway to a Sustainable Energy Future, Int. J. Coal. Geol., 65: 173-190 (2006).
[6] Coal Information, International Energy Agency, 9 Rue de la Fédération 75739 Paris Cedex 15, France, IEA (2016).
[7] Farrauto R., Hwang S., Shore L., Ruettinger W., Lampert J., Giroux T., Liu Y., , Ilinich O., New Material Needs for Hydrocarbon Fuel Processing: Generating Hydrogen for the Pem Fuel Cell, Annual Review of Materials Research, 33: 1-27 (2003).
[8] Timm D.L., Onsan Z.I., On Board Fuel Conversion for Hydrogen-Fuel-Cell-Driven Vehicles, Catalysis Review, 43: 31-84 (2001).
[9] Krumpelt M., Krause T.R., Carter J.D., Kopasz J.P., Ahmed S., Fuel Processing for Fuel Cell Systems in Transportation and Portable Power Applications, Catalysis Today, 77: 3-16 (2002)
[10] Pietrogrande P., Bezzeccheri M., in: Blomen L.J.M.J., Mugerwa M.N., “Fuel Cell Systems”, Plenum Press, New York pp. 121–156 (1993).
[11] Ke Liu1, Chunshan Song, Velu Subramani., Hydrogen and Syngas Production and Purification Technologies, John Wiley & Sons, Ltd (2009).
[12] Muradov N., Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels, Power P., Source J., 118: 320-324 (2003).
[13] Matsui Y., Kawakami S., Takashima K., Katsura S., Mizuno A., Liquid-Phase Fuel Re-Forming at Room Temperature Using Nonthermal Plasma, Energy Fuels, 19: 1561-1565 (2005).
[14] Yan, Wei, Hoekman, S. Kent., Production of CO2-Free Hydrogen from Methane Dissociation: A Review, Environ. Prog. Sustainable Energy, 33(1): 1944-7450 (2005).
[15] Chum H.L., Overend R.P., Biomass and Renewable Fuels, Fuel Process Technol., 71: 187-195 (2001).
[17] Carrieri D., Kolling D., Ananyev G., Dismukes G.C., Prospecting for Biohydrogen Fuel, Ind Biotechno, 2: 133-137 (2006).
[18] Turner J., Sverdrup G., Mann M.K., Maness P.-C., Kroposki B., Ghirardi M., Evans R.J., Blake D., Renewable hydrogen productionInt. J. Hydrogen Energy, 32:379–407 (2008)
[19] Khanal S.K., Chen W.-H., Li L., Sung S., Biohydrogen Production in Continuous-Flow Reactor Using Mixed Microbial Culture, Water Environment Research, 78: 110-117 (2006). 
[20] Sørensen B., “Hydrogen and Fuel Cells Emerging Technologies and Applications”, Elsevier Academic Press, New York, pp. 450 (2011)
[21] Song H, Zhang L., Ozkan U.S., Effect of Synthesis Parameters on the Catalytic Activity of Co–ZrO2 for Bio-Ethanol Steam Reforming, Green Chemistry9: 686-694 (2007).
[22] Tonkovich A.Y., Perry S., Wang Y., Rogers W.A., Qui D., Peng Y., Microchannel Process Technology for Compact Methane Steam Reforming, Chem. Eng. Sci, 98:575–581 (2004).
[23] Tomasz C, Marek S., Co-Gasification of Biomass and Coal for Methanol Synthesis, Applied Energy, 74:393-403 (2003))
[24] TeGrotenhuis W.E., King D.L., Brooks K.P., Golladay B.J., Wegeng R.S., in: Baselt J.P., Eul U., Wegeng R.S. (Eds.)., “Optimizing Microchannel Reactors by Trading off Equilibrium and Reaction Kinetics Through Temperature Management”, AIChE, New Orleans, LA, p. 18 (2002).
[25] O’Brien C.J., Hochgreb S., Rabinovich A., Bromberg L., Cohn D.R., in: “Proceedings of the Intersociety Energy Conversion Engineering Conference, Hydrogen Production via Plasma Reformers”, IEEE, Piscataway, Washington, DC, USA, pp, 1747–1752 (1996)
[26] Belafi-Bako K., Bucsu D., Pientka Z., Balint B., Herbel Z., Kovacs K.L., Wessling M., Integration Separation Processes to Recover and Enrich Hydrogen, Int. J. Hydrogen Energy, 31: 1490–1495 (2006)
[27] Kovacs K.L., Maroti G., Rakhely G., A Novel Approach for Biohydrogen Production, Int. J. Hydrogen  Energy, 31: 460–1468 (2006).
[28] Adennis Y. C. Leung., Giorgio. Caramanna B.M. Mercedes Maroto-Valer. B., An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies, Renewable & Sustainable Energy Reviews, 39: 426–443 (2006).
[29] International Standard Organization, “ISO 1953:2015, Hard Coal-Size Analysis by Sieving”, Geneva Switzerland (2015).
[30] International Standard Organization, “ISO 17247:2013, Coal-Ultimate Analysis”, Geneva Switzerland (2013).
[31] Lee J., Im G., Yoo J.-H., Lee S., Jeon E.-C., Development of Greenhouse Gas (CO2) Emission Factored for Korean Coal Briquettes, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37:1415–1423 (2015).
[32] International Standard Organization “ISO 17246:2010, Coal-Proximate Analysis”. Geneva Switzerland (2010)
[33] Pan Y.G., Velo E., Roca X., Manya` J.J., Puigjaner L., Fluidized-bed Co-Gasification of Residual Biomass/Poor Coal Blends for Fuel Gas Production, Fuel, 79:1317-1326 (2000).
[34] Buonicore. A.J., “Air Pollution Control Equipment, Design, Selection, Operation and Maintenance”: Prentice-Hall (1982).
[35] Pettinau A, Orsini A, Calı G, Ferrara F., The Sotacarbo Coal Gasification Experimental Plant Fora CO2-Free Hydrogen Production, Int. J. Hydrogen Energy,35: 9836-9844 (2010).
[36] Benini. E., “Progress in Gas Turbine Performance”, InTech, (2013).
[37] Avinash K.A., Biofuels (Alcohols and Biodiesel) Applications as Fuels for Internal Combustion Engines, Prog. Energy Combust. Sci., 33: 233-271 (2007).
[38] Himmelblau D.M., “Basic Principles & Calculations in Chemical Engineering”: Prentice-Hall (1989).