Enhanced Photocatalytic Activity of Sol-Gel Derived Coral-like TiO2 Nanostructured Thin Film

Document Type : Research Article


Department of Chemical Engineering, Hamedan University of Technology, Hamedan, I.R. IRAN


To enhance photocatalytic degradation of organic pollutants, coral-like TiO2 nanostructured thin films were chemically synthesized through the sol-gel method. The fabricated thin films were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), nitrogen sorption isotherms, mercury porosimetry measurements, and UV-Vis Diffuse Reflectance Spectrum (DRS). The coral-like TiO2 structures were assembled from cashew-like nanoparticles, which were composed of numerous highly crystallized in anatase phase. The assembled materials possess a high specific surface area of 167 m2/g and mean pore size diameter of 12.3 nm. The coral-like TiO2 nanostructured thin film shows a significantly higher photocatalytic activity than that of the commercial photocatalyst P25-TiO2 based film on the degradation of Methylene Blue (MB) and Methyl Orange (MO). The high photocatalytic activity of film was ascribed to the large light absorption caused by small particle size, micro/meso, and macropore structures, and pore scattering, reduced band gap energy, and reduced recombination of electron-hole pairs. These findings open up a new approach for promising environmental applications.


Main Subjects

[1] Janitabar Darzi S., Mahjoub A. R., Nilchi A., Synthesis of Spongelike Mesoporous Anatase and Its Photocatalytic Properties, Iran. J. Chem. Chem. Eng. (IJCCE), 29(2): 37-42 (2010).
[2] Chen Sh.-L., Wang A.-J., Dai Ch., Benziger J. B., Liu X.-Ch. The Effect of Photonic Band Gap on the Photo-catalytic Activity of nc-TiO2/SnO2 Photonic Crystal Composite Membranes, Chem. Eng. J., 249(1): 48-53 (2014).
[3] Wang Sh., Yang J., Zhang H., Wang Y., Gao X., Wang L., Zhu Zh. One-pot Synthesis of 3D Hierarchical SnO2 Nanostructures and Their Application for Gas Sensor. Sensor Actuat. B-Chem., 207 (Part A): 83-89 (2015).
[4] Mali S. S., Betty Ch. A., Bhosale P. N., Patil P. S., Hong Ch. K. From Nanocorals to Nanorods to Nanoflowers Nanoarchitecture for Efficient Dye-sensitized Solar Cells at Relatively Low Film Thickness: All Hydrothermal Process, Scientific Reports, 4 (5329): 1-8 (2014).
[5] Hardin B. E., Hoke E. T., Armstrong P. B., Yum J-H., Comte P., Torres T., Fréchet J. M. J., Nazeeruddin M. Kh., Grätzel M., McGehee M. D. Increased Light Harvesting in Dye-Sensitized Solar Cells with Energy Relay Dyes, Nat. Photonics, 3 (1): 406-411 (2009).
[6] Grätzel M. Photoelectrochemical Cells.  Nature, 414(1): 338-344 (2001).
[7] Masuda Y., Ohji T., Kato K. Multineedle TiO2 Nanostructures, Self-assembled Surface Coatings, and Their Novel Properties. Cryst. Growth & Des., 10(2): 913-922 (2009).
[8] Gnatyuk Y., Smirnova N., Korduban O., Eremenko A., Photoelectrochemical and Photocatalytic Properties of Mesoporous TiO2 Films Modified with Silver and Gold Nanoparticles, Surf. Interface Anal. (SIA), 42(1): 1276-1280 (2010).
[9] Patil S. R., Hameed B. H., Škapin A. S., Štanga U. L.  Alternate Coating and Porosity as Dependent Factors for the Photocatalytic Activity of Sol–gel Derived TiO2 Films. Chem. Eng. J., 174 (1): 190-198 (2011).
[10] Shao X., Lu W., Zhang R., Pan F., Enhanced Photocatalytic Activity of TiO2-C Hybrid Aerogels for Methylene Blue Degradation. Sci. Rep., 3(1): 1-9 (2013).
[11] Apollo S., Onyongo M. S., Ochieng A. UV/H2O2/TiO2/Zeolite Hybrid System for Treatment of Molasses Wastewater, Iran. J. Chem. Chem. Eng. (IJCCE), 33(2): 107-117 (2014).
[12] Rao Y. F., Chu W. Reaction Mechanism of Linuron Degradation in TiO2 Suspension Under Visible Light Irradiation with the Assistance of H2O2. Environ. Sci. Technol. (ES & T), 43 (16): 6183-6189 (2009).
[13] Chen J., Yang H. B., Miao J., Wang H-Y., Liu B. Thermodynamically Driven One-Dimensional Evolution of Anatase TiO2 Nanorods: One-Step Hydrothermal Synthesis for Emerging Intrinsic Superiority of Dimensionality. J. Am. Chem. Soc. (JACS), 136(43): 15310-15318 (2014).
[14] Yu J., Yu J. C., Leung M. K. P., Ho W., Cheng B., Zhao X., Zhao J. Effects of Acidic and Basic Hydrolysis Catalysts on the Photocatalytic Activity and Microstructures of Bimodal Mesoporous Titania. J. Catal., 217 (1): 69-78 (2003).
[16] Zheng Z. K., Huang B. B., Qin X. Y., Zhang X. Y., Dai Y. Strategic Synthesis of Hierarchical TiO2 Microspheres with Enhanced Photocatalytic Activity, Chem. Eur. J., 16 (37): 11266-11270 (2010).
[17] Duong T., Phan N., Kim E. J., Hahn S. H., Kim W. J., Shin E. W. J. Synthesis of Hierarchical Rose Bridal Bouquet- and Humming-top-like TiO2 Nanostructures and Their shape-dependent Degradation Efficiency of Dye. Colloid Interface Sci. (COCIS), 356 (1): 138-144 (2011).
[18] Tian G. H., Chen Y. J., Zhou W., Pan K. Tian C. G., Huang X. R., Fu H. G. 3D Hierarchical Flower-like TiO2 Nanostructure: Morphology Control and Its Photocatalytic Property. Cryst. Eng Comm., 13 (1): 2994-3000 (2011).
[20] Wong E.M., Bonevich, J.E., Searson P.C., Growth Kinetics of Nanocrystalline ZnO Particles from Colloidal Suspensions, J. Phys. Chem. B, (JPCB), 102 (40): 7770-7775 (1998).
[21] Liu B., Zeng H.C., Fabrication of ZnO “Dandelions” Via a Modified Kirkendall Process, J. Am. Chem. Soc. (JACS), 126 (51): 16744-16746 (2004).
[22] Liyong W., Yuanyuan H., Shiwen D., Photo-Catalytic Nanometer Composite-Crystal TiO2 Powder Synthesized by Two-Step Method, Iran. J. Chem. Chem. Eng. (IJCCE), 29 (3): 13-17 (2010).
[23] Kolenko Y. V., Burukhin A. A., Churagulov B. R., OleynikovN. N. Synthesis of Nanocrystalline TiO2 Powders from Aqueous TiOSO4 Solutions Under Hydrothermal Conditions. Mater.Lett., 57(5-6): 1124-1129 (2003).
[24] An R., Yu Q., Zhang L., Zhu Y., Guo X., Fu S., Li L., Wang C., Wu X., Liu C., Lu X. Simple Physical Approach to Reducing Frictional and Adhesive Forces on a TiO2 Surface via Creating Heterogeneous Nanopores. Langmuir, 28 (43): 15270-15277 (2012).
[25] Gregg S. J., Sing, K. S. W. “Adsorption, Surface Area and Porosity”, Academic Press, London, (1982).
[26]  Kumar K.V., Porkodi K., Rochaa F., Langmuir-Hinshelwood Kinetics- A theoretical Study. Catalysis Commun, 9 (1): 82-84 (2008).
[27] Yang G., Hu P., Cao Y., Yuan F.,  Xu R. Fabrication of Porous TiO(2) Hollow Spheres and Their Application in Gas Sensing. Nanoscale Res Lett., 5(9): 1437-1441 (2010).
[28] K. Murugan, T. N. Rao, A. S. Gandhi, B. S. Murty. Effect of Aggregation of Methylene Blue Dye on TiO2 Surface in Self-Cleaning Studies, Catalysis Commun., 11 (6): 518-521 (2010).
[29] Wu Ch-H., Chern J-M. Kinetics of Photocatalytic Decomposition of Methylene Blue. Ind. Eng. Chem. Res. (I&EC), 45 (19): 6450-6457 (2006).
[30] Samarghandi M.R., Zarrabi M., Noori Sepehr M., Panahi R., Foroghi M. Removal of Acid Red 14 by Pumice Stone as A Low Cost Adsorbent: Kinetic and Equilibrium Study, Iran. J. Chem. Chem. Eng. (IJCCE), 31 (3): 19-27 (2012). 
[31] Robles-Águila M.J., Elizalde-González M.P., Mendoza M.E., Silva-González R., Yee-Madeira H., Bulk and Surface Analysis of Ti1–xFexO2/Fe2O3 Composites Prepared by Solid State Reaction for Photocatalytic Applications, Surf. Interface Anal. (SIA), 44 (1): 484-490 (2012). 
[32] Simin Janitabar Darzi; Maryam Movahedi, Visible Light Photodegradation of Phenol Using Nanoscale TiO2 and ZnO Impregnated with Merbromin Dye: A Mechanistic Investigation, Iran. J. Chem. Chem. Eng. (IJCCE), 31 (2): 55-64 (2014).