Adsorption Equilibrium and Kinetics of Lead Ion onto Synthetic Ferrihydrites

Document Type : Research Note


School of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, CHINA


Batch experiments were conducted to study the adsorption behaviors of lead ion (Pb2+) onto ferrihydrites prepared using three different procedures which were characterized  by textural analysis (BET). The adsorption removal of Pb2+ by the three ferrihydrites (called FH-1, FH-2 and FH-3, respectively) were compared, and FH-3 shows fast adsorption kinetics as well as high adsorption capacities, the adsorption properties of the three ferrihydrites for lead ion depend on the pH value and the optimal pH for Pb2+ adsorption of FH-3 is 6.0. The maximum adsorption capacity of lead ion on FH-3 is 13.75 mg/g and the adsorption isotherms followed Langmuir isotherm model better than the Freundlich isotherm model. The adsorption kinetic data could be described well by pseudo-second-order kinetic equation.


Main Subjects

[1] Adewunmi C.O., Becker W., Kuehnast O., Oluwole F., Dörfler G., Accumulation of Copper, Lead and Cadmium in Freshwater Snails in Southwestern Nigeria. Sci. Total Env., 193(1): 69-73 (1996).
[2] Rashed M.N., Lead removal from Contaminated Water using Mineral Adsorbent. The Environmentalist21(3): 187-195 (2001).
[3] Li Y.H., Di Z., Ding J., Wu D., Luan Z., Zhu Y., Adsorption Thermodynamic, Kinetic and Desorption Studies of Pb2+ on Carbon Nanotubes, Water Res., 39(4): 605-609 (2005).
[4] Lin K.C., Chou I.N., Studies on the Mechanisms of Ni2+-Induced Cell Injury: I. Effects of Ni2+ on Microtubules, Toxicol. Appl. Pharmacol., 106(2):209-221 (1990).
[5] Malkoc E., Nuhoglu Y., Investigations of Nickel(II) Removal from Aqueous Solutions using Tea Factory Waste, J. Hazard. Mater. B, 127(1-3): 120-128 (2005).
[6] Ghosh D., Bhattacharyyra K.G., Adsorption of Methylene Blue on Kaolinite, Appl. Clay Sci., 20(6): 295-300 (2002).
[7] Yabe M.J.S., Oliveira E., Heavy Metals Removal in Industrial Effluents by Sequential Adsorbent Treatment, Adv. Env. Res., 7(2): 263-272 (2003).
[8] Erdem M., özverdi A., Lead Adsorption from Aqueous Solution onto Siderite, Sep. Purif. Technol., 42(3): 259-264 (2005).
[9] Shukla S.R., Pai R.S., Shendarkar A.D., Adsorption of Ni(II), Zn(II) and Fe(II) on Modified Coir Fibres, Sep. Purif. Technol., 47(3): 141-147 (2006).
[10] Corapcioglu M.O., Huang C.P., The Adsorption of Heavy Metals onto Hydrous Activated Carbon, Water Res., 21: 1031-1044 (1987).
[11] Gu B., Schmitt J., Chen Z., Liang L., McCarthy J.F., Adsorption and Desorption of Nature Organic Matter on Iron Oxide: Mechanisms and Model, Environ. Sci. Technol., 28: 38-46 (1994).
[12] Akhtar S., Qadeer R., Active Carbon as an Adsorbent for Lead Ions, Adsorp. Sci. Technol., 15: 815-824 (1997).
[13] Ruthven D.M., "Principles of Adsorption and Adsorption Processes", New York: Wiley, (1984).
[14] Yan W.L., Bai R., Adsorption of Lead and Humic Acid on Chitosan Hydrogel Beads, Water Res., 39(4): 688-698 (2005).
[15] Bamgbose T.T., Adewuyl S., Bamgbose O., Adetoye A.A., Adsorption Kinetics of Cadmium and Lead by Chitosan, African J. Biotech., 9: 2560-2565 (2010).
[16] Wang L.H., Lin C.I., Adsorption of Lead(ii) Ion from Aqueous Solution using Rice Hull Ash, Ind. Eng. Chem. Res., 47(14): 4891-4897 (2008).
[17] He W.J., He Y.F., Yan D.Z., Wang Y., Wang R.M., Adsorption of Lead Ion Using Polymer-Modified Wheat Straw Carboxymethylcellulose, J. Disper. Sci. Technol., 35(10): 1378-1385 (2014).
[18] Chen H., Wang A., Kinetic and Isothermal Studies of Lead Ion Adsorption onto Palygorskite Clay, J. Colloid Interf. Sci., 307(2):309-316 (2007).
[19] Zhu S., Hou H., Xue Y., RETRACTED: Kinetic and Isothermal Studies of Lead Ion Adsorption onto Bentonite, Appl. Clay Sci., 40(1-4): 171-178 (2008).
[20] Huang K., Zhu H., Removal of Pb2+ from Aqueous Solution by Adsorption on Chemically Modified Muskmelon Peel, Environ. Sci. Pollut. Res., 20(7): 4424-4434 (2013).
[21] Randall S.R., Sherman D.M., Ragnarsdottir K.V., Collins C.R., The Mechanism of Cadmium Surface Complexation on Iron Oxyhydroxide Minerals, Geochim. Cosmochim. Ac., 63(19-20): 2971-2987 (1999).
[22] Mercer K.L., Tobiason J.E., Removal of Arsenic from High Ionic Strength Solutions: Effects of Ionic Strength, pH, and Preformed Versus in Situ Formed HFO, Environ. Sci. Technol., 42(10): 3797-3802 (2008).
[23] Masue Y., Loeppert R.H., Kramer T.A., Arsenate and Arsenite Adsorption and Desorption Behavior on Coprecipitated Aluminum:Iron Hydroxides, Environ. Sci. Technol., 41(3): 837-842 (2007).
[24] Arai Y., Spectroscopic Evidence for Ni(II) Surface Speciation at the Iron Oxyhydroxides−Water Interface, Environ. Sci. Technol., 42(4): 1151-1156 (2008).
[25] Filip J., Zboril R., Schneeweiss O., Zeman J., Cernik M., Kvapil P., Otyepka M., Environmental Applications of Chemically Pure Natural Ferrihydrite. Environ. Sci. Technol., 41(12): 4367-4374 (2007).
[26] Liu H., Wang Y., Ma Y., Wei Y., The Microstructure of Ferrihydrite and Its Catalytic Reactivity, Chemosphere, 79(8): 802-806 (2010).
[27] Hasar H., Adsorption of Nickel(II) from Aqueous Solution onto Activated Carbon Prepared from Almond Husk, J. Hazard. Mater. B, 97(1-3): 49-57 (2003).
[28] Naidu R., Kookana R.S., Sumner M.E., Harter R.D., Tiller K.G., Cadmium Sorption and Transport in Variable Charge Soils: A Review, J. Environ. Qual., 26, 602-617 (1997).
[29] Liu H., Li P., Lu L., Wei Y., Sun Y.H., Transformation of Ferrihydrite in the Presence or Absence of Trace Fe(II): The Effect of Preparation Procedures of Ferrihydrite, J. Solid State Chem., 182(7): 1767-1771 (2009).
[30] Ho Y.S., Ofomaja A.E., Pseudo-Second-Order Model for Lead Ion Sorption from Aqueous Solutions onto Palm Kernel Fiber, J. Hazard. Mater. B, 129(1-3): 137–142 (2006).
[31] Ho Y.S., McKay G., The Kinetics of Sorption of Divalent Metals Ions onto Sphagnum Moss Peat, Water Res., 34(3): 735-742 (2000).