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bution to be calculated.

OF A DIATOMIC HOLECULE Within the Born-Oppenheimer ap -

Reza Islampour and Ali Maghari proximation{2),the vibronic matrix-
element {(which determines the inten-

Department of Chemistry sity of an optical transition) is

. iven b
dniversity of Teacher Education diven by . ) A
@av'|M|bv'>=/y am s ¢, (., M(x)
Tehran-Iran

3
b, (r,g")a r v (g"ag" 1
(Received 13th June,1988) ~ N

where r and g denote the electronic
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and vibrational variables, respec -

. ) £ ‘ is ti ic dipol
The electronic absorption spec- tvely,and ﬂ(§)ls he glectric pose

. . . LW t th n spec -
tral lineshape of a diatomic mole- operator.We adop € commno pec

. . . troscopic notation,whereby we label
cule with harmonic potential curves Seop whereby

. . . titi e
1s calculated using the time corre- lower state quantities by a doubl

. . . i h ntiti
lation function formalism.Both the prime and the upper state quantities

S _ - i me . v
equilibrium shift and the frequency by a single prime. It is customary

. . . . that th t ic tran-
shift of the two linking electronic Lo assume at the electronic tran

states are taken into account. The sition moment

spectrum is also calculated using Eab(q):_hﬁ;(flq“)¥(€)¢b(ffq‘)d3f 2

the cumulant expansion which is re- is a slowly varying function of nu-

lated to the correlation function of <clear diplacement and to expand the

the time-dependent energy gap bet - transition moment about the equilib-
ween the two electronic states. rium configuration of one of the two
electronic states as power series in

INTRODUCTION

the displacement coordinate g' or g“

In gcneral, the vibraticnal struc- = " "y
g Eab(q) E%b(o)+(dEEab/dq )Oq -

ture of ar electronic spectrum 1is = +{d dg’ '+ 3
Uap (O (du p/da’) ja
determined by two guantities: the According to the Condon approxima -
dependence of the electronic tran - tion(3), we retain only the first
sition moment upon the nuclear coOr- (constant) term in these expansions:

A7 t d th *hi i TodFR N .
inates an e change in melecular H@b(q):kfab(o)' (more accurately, the

dimensions upon electronic excita - function

1 b(q) is replaced by some
~a8
tion .Given the change in the mole- constant Eab(ﬁ}rWhere R is some sort
cular dimensions, and the force of average internuclear distance for

fields for the two lirking electronic Lie LrausiiLion.The appropriate valne

states, the F ranck--Condon principle of R is called the R-centroid for the
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transition(4). The vibronic matrix
element is then given by

}gb(0)< vl v

It is the purpose of this article
to formulate the absorption spectral
lineshape of a diatomic molecule wi-

thin the condon approximation.

General formulation

In this section we shall attempt
to relate the transition probability
obtained by <calculation to the mole-
cular abscrption coefficient , the
guantity obtained by experiment.

Consider a sample of length 1 ,of
unit cross section,and containing Ni
molecules per unit volume in the
state | 1> .In a layer of thickness 31
the number of molecules is Nidl -
When light of frequency o passes

through the sample some is absorbed

cause each photon that absorbed at
a frequency w carried an energy hw,
therefere

-(1/hw)dIi(w)/dl

NiI(w )kif(uJ)/h 5

-dN. () /dl
I

where eq. A2 has been used.The ener-
gy density at frequncy w 1is rela -
ted to I{ ®w) through I(w)=(c/n)
0 ({w) , where ¢ is the speed of
light and N is the refractive index
of the medium,so that eg. 5 can be
expressed as
—dn, (w)/dl = Ni(c/ Mo fwik, (a)/
hey . 3}
Comparing with 4 ,we may then

write

=({n/ W. w
Kif(w) {(n/c} (thw ) lf(u))/p (w) 7
From time-dependent perturbation
theory,the transition probability
per unit time of the system makinga

transition from a given initial

owing to tansitions it inducesin the State|is to some final state | f» due

molecules and the number of photons

absorbed is equal to the number of

molecules excited:the decrease in the
number of molecules per second in the
state | 1> is—dNi(w ) ,where Ni(tn)is
the number of molecules which respond
to the radiation of fregency w . The
number of transitions per second at
freguency w 1is egual to the transi-

tion probability Wi times the number

t
of molecules in the layer of the sam-
ple,Ni dl. Therefore
—dNi(w ) =

Let

W, _(w)N,dl . 4
if i

d1(w ) be the change in the

light intensity at freguncy gy due

to passage through the sanmple Be-

to abscrption of isotropic and un-
polarized light of freguency w is(5)
2 2 N
W, {w)={4y /307 )p (w ) |< 1]M| f >|2
if i
[8 (e w) + 6 (wy* 0)] 8
W = - i
here W= g (Di,and & (x) is the
delta-function. Introducing eg. 8
into eq. 7 we obtain the absorption

f(U))as

K (w)=(n/e) w(ar/am) [<i |8 |£5]°
+w) ] 9

coefficient of the system Ki

[5(wif- w)+ 6 ( W ¢

In most physical problems we are
not interested in the transition of
cur system from a given initial sta-
te to a given final state,but in

transitions to all final states.More
over, we ordinarily do not know the
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precise initial state of the system
when perturbation acts on,and the
best that we can often do is that to
assume that the initial state is
given by a canonical distribution
pi=e"BEi/ £, e BEi o =1/k T 10

Where KB is Boltzman's constant.
Eg. 10 can be written in terms of
the density matrix E as

s CEREETL af
= e £ /Tre 8 .

o 11

With these assumptions we obtain
the result that the canonically ave-
raged absorption coefficient of the

system K( ()} is given by

Klw) = (M/c) (44°/30) Fip P,
(<i] d :f>‘2[5(wif—m)+(u}if+ ) ]
1z

Since the summation i and f do over
the quantum states of the system, we
interchange these indices in the sum-

mation over the second delta func -

tion, giving
2
= z -P_jw
K{w) M/c) (4m™/3R) if(Pi Pf) if
i 2
< i > Sw, ~w).
bl m] e>] [ %, ) 13
If we assume that the system is ini-

tially in thermal equilibrium, then

P_=P, - B At

£=F,e%p ( Bﬁuif)

and so
2

K(w) = (4T°n/3hc)w] 1~ exp (- thw ]
Lo 2

Lip Py I < M| £> | Slw mw) 14

Note that the delta function permits

to replace w; ¢ by -

Using eq. 7 , we obtain the cano-
nically averaged absorption coef -
ficient of the system K(w ) as

2
Kiwpw) = (4 ¢ n’3hc)w[ 1~ exp{- Rﬁmﬂ

Lip Py l<i #|e>]? §w, .~ w) 15

49

To simlify eg. 15 , it is con -
venient to introduce the integral
representatior. of the delta func -
tion given by
§i=cam T

Substituting 16

dt exp{itx).1l6
into 15 , we,after
a little algebra,find

(4 ﬂ2r1/3hc)(u[l—exp(—f¥ﬁm)]

K(w} =
S{wjy, 17
s(w) = 1)t FTar exp-iwT)
< M(0).M(7)> 18
Wwith )
M(r) = e xplifit /A)texp(~iHy/ B)
. 19
and the angular brackets mean
<A > =Tr( ﬁﬁ ) 20

for any operator R.Eq. 17 is the
desired result,namely, the lineshape
function S{w) is written as the
Fourier transform of the time-cor-
relation function of the dipole mo-
ment operator cof the absorbing sys-

tem in the absence of the radia -

tion field.

The spectral lineshape of a diatomic

molecule

We consider a diatomic molecule
with two electronic states:
a ground state | a> , and an ex-
|b> .

cited state The adiabatic

hamiltonian of the system is

-~ t o~ 3 ~
H=;a >(E +H <al + |b>E +H
: ( a a) ' B> b b)
<b |, 21
Where Ea and Eb are the electronic

energies of the states| a > and

| &> , respectively: and the vibra-
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ticnal hamiltonians (in harmonic

approximation) for the two electro-
nic states are gquven by
= p"/2

= P'/2

1l

2q"2 59

e

A + Huw

b
We further assume that the displac-

jusips
!

+ %ou'Zq'2 23
ement of coordinates g' and gq" are
related by the following transfor-
mation:
g' =g" +4d , 24
Where d is a linear displacement of
the eqguilibrium configuration in the
two electronic states.

With hamiltonian 21 , We may
write the correlation-function in
eq. 17 within the Condon -approxi -

mation as

I fad 2
< M) . M(T)> = [u_ (0) [“exp
i W T
(i SN )G( 1) 25
With

G(1) =<exp (KT /h)exp eﬁ;mp
26
Where the average is over initial
(ground) vibrational states.
We shall be interested in cal -
culating G{ T) which can be written
as

o Sl o L, wexp] - A" (vl |
exp[ -3 (v' + w] v v 5] 2
=z~ [] dg"dg"z . exp[A"

(") ] (aMX L (§)x

L, exp-N
(V‘ + lﬁ)inJ (ql)Xvu(q ) ’ 27
Where ' = -iw' T, 2" = 3Rw" + iw"T

and harmonic oscillator eigenfunc-
tions are given by

MR
v

X (@) =[( Hv(w’aq)exp

(-Yaq¥2) , vy = ( uw/h) . 28

Here Z is the canonical partition

function of the harmonic oscillator.
By making use of the Mehler's for-

mola (7)

Zvexp [—(v + R E] X (D) xv(i) = Y12

e sian £)™9%
exp [ -4 v(q + @ °TanhE /2 - & Y (q-3)°

Coth&sz |,

We then obtain

Gl =z Yo'y )(2m ) (sinh A
sinh ") ? /fdq"dg"

exp [—%'Y'kq" f i”)zTanhk n/2 =k y"
(q" - a")%coth /2]

exp[-—% v'(g' + é')zTanh A2 Ny !
{q' - &')2cOth AWs2] . 29
To evaluate the integrals in eq.29,
We first use eq. 24 to transform g’
and §' to g" and q" and then change
- q" and

+ g" and gq"

make use of the Gaussian inteyration

variables to g"

formula

+ oo 2 -
f_agz exp [—(ax + bxﬂ =
exp(b /4a) .,

('rr/-':\)!7

The following closed expression for

G{(t ) is obtained
G{t) = Z_l(y ! Y")%( M Sinpp)'Sinh
A”)_%exp(- YW“dz/Q) 30
Where
(0 =y"Coth)"/2 + y'Coth)'/2
A =vy"Tanhj"/2 + y'Tanh}'/2 30
© =y"Coth)'/2 + v'Coth)"/2

Equation 30 can be alternatively

written in the form

G{T) = exp[ _TlT "d2/§ -k ]’_.n(Z2 Qn

Sinb ) '§inh 3"/ 'y ") 31
= exp| £(1 )|
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In this form, the connection with the
cumulant expansion given in next sec—
tion is more transpafent. Eg. 31 is
our time domain electronic spectrum
which is convented into its fregu -
ency domain (The absorption spectrom)
ounter part via a Fourier transfor-
mation tecknique.

The integration in eg. 17 can not
be carried cut without introducing
approximations.Let us assume that the

modifications of frequency,that is
§ = (" -w’' )/ w" ., and displace-
ment coordinate d between the two
electronic states are small , and
expand the function f{ . 4 .1 )as
a two-variable taylor series about
§ = 0 and p= 0.
To the second order of approxima -

tion we find

£(8, 4, 1) =- '?f'(iw"T) X(O) -
2

4
. Z 2 p 2
—%—(lm"r ) [1-x “©@ ] + —%-—- [x
2 l n 2
tt) ~x @]+ S yraxz -
X @)+ ... 32
Where
(1) = CothBhw" /2 Cosw"1 + isinw" T
32
The integration in egq. 18 is facil-
liated if the terms containing §

in eq. 32 are neglected. To this

approximation, we may write eq.18

as

Syl = {2W+) =Eab{0) exp |

-s x( 177 a- exp [—iAT +5
X(ty] . 34

Where

5 = %Y’"d2 35

A =w- CI L8w" yi{o) . 36

b
The integral in eq. 34 resembles
integrals which appear in the difi-
nition of Bessel's function. To
relate S{w) to these functions ,

let us write egq. 34 as

_l =
S(w) = 2m) |u_ (017 exp[-s ¥
(0) + 481 A] x
fe _Qj% exp| SCschphy "/2 Cosg-
—e
AT/ w" ' 37
and make use of the identity(9)

(2 F)_l.fjm exp(yCos § - ip pld. =

o0
—+oo
L §p-k)I_(y) 38
k=— P

Where Ip is the modified Bessel
function of order p.Now eg . 37

takes the form

s(w) =]y ab(0)|2(1/ w'Yexp[ ~S¥
(0) + pghw"/2)] I_(sCsch BRw"/2).
39

Eq. 39 requires that p or A/w
be an integer. In coder words , the

absorption spectrum is discrete.

The cumulant expanssion of G( 1 )

In this section we shall expand
our time domain spectrum G{ T) ,in
terms of cumulants(l0). To thatend

we make use of the operator iden-

tity (11):

exp(a + b) =exp_ [de'E'B(T51
~ 0

explaT) ., 40

Where

g( T) = exp(;‘r) % expl{-a 1),41

and eXxp 1is a negative time order-
ing exponential which means that

b(1)'s in power series expansion

of exp_[fT dr! b(TU] should be
0
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ordered so that time increases from The simplest approximation 1is
left to right: obtained by terminating the series
~ T ~ .
exp_ [fT dr' e’ )] =1l+j cégb at the second order; to this ap-
(1)+ OdeT 1 rtia 123('r2?6(1 R proximation we may write eq.42 as
f n B . ~A L 2
S G(T) = exp [(1/h)<Hb Ha>T+(l/ )
”~ o~ ~ ~ ~
= ; - T T
I{ we Ehoose i 1Ea/ﬁ and E 6 d TS 1 dT: <U(12)U(leJ
iy, - 8) - < - B_>] /b =il/m 0 A
_ a a G(T) = exp |(i/h)<H - U>T +
in eq. 40 , we can then write eq. L2 o b, &
(i/h)" frar (v -1) <U0OU{T.)> ,
26 as 0 L 1 1
~ ~ 46
= i < —
G( 1) expL i Hb Ha>1'/h]<exp_

where the second line of'eq.46 is

[\l/h)_F at' O(t')]>
= exp | i <Hb - ﬁa>T/ﬁ | exp
{ Ln(L +<exp_ [ (i/B) ;T dq' U

justified in appendix 2
To apply eg. 46 to our case {a

diatomic molecule) we need , as a

)] - 1)) . ¢ 42 N R
a first step,to calculate H - H
We note that U{t ) ( which is 2
From egs. 21 , we obtain ﬁ )/
related to the time dependent ener- 2
h=vo] -568@-¢8q? +(1 5)
gy gap of the two electronic )
dg" + %(1 -6)°a°] . 47

states) is the gquantity which deter- ~ ~
To evaluate the cumulant <U(Q)Y
mines the resulting line shape

{1 )> we make use of the rule which
Upon expanding the logaritm in eq.

holds for the harmonic systems(12):
24 and collecting terms according
A the expectation value of an odd
to the power of 1U,we obtain(6)

Ln(l + <exp_ [(i/h T U(t')]
-1 %) = (i/m)? & a1 /T ldr,k,
(tznrl)+(l/h) ST dr%ﬁd

number of g's vanishes and the
‘expectation value of an even number
of gq's is equal to the sum of pro-

0 ducts of pair expectation values,
T2 24 T3}‘3(’f3'1f2' ST

(1/h)4f ar, ftlder Zdr, f“

dr4[K (gr T30 7 g0 Tl)

the sum being over all pairings
which preserves the order of the
pair. For example

K. { YK ( ) - K, (
20 Tgr T3/ Ty Ty 2t Ty’ - +
€A% > T S > <> TG s

IK, Oy 17 ) - K (r,r7, ) K i3
2020 sl N <aAp +< Q> dd >
(Tytz)]+”- 43 3 i 3
The pair correlations are given by
Where the cumulants K ( T, T_,
no 102 (12)

e-2s T ) are defined by {10) -1
n €q"(0)g" (7 )> = %G™ ~ x(r) ,48

K (0T qreee » 7.) = <0(T_ )0
no.n1° 0 2 Where (T ) is given by eg. 33

n 1

(‘cz)...ﬁ(r ) s 44
n

Resulting in
Note that we have

Kl(T) =<G> =0, 45
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(i/h) be L ”Ha> = —%(i;";ﬁ(z— o)

X A(0) + H(iw") y'"({1- &) 49
(i/h) % <0@U( 1) >= %—(m‘")z 52
(2 - ¥y (oY + Wy et
5)t5¢ 50
Introducing egs. 49 - 50 into eq.
46 and making use of eq. 33 ,after
straightforward integration we
obtain

G{T ) = exp { — (1 w"'t) & {2 =-48)

( 87 - 268 -4) )((O) - %(u‘" ) s(2-
Da - m%a - S50 te ~r\')2(m"ﬂ
[1-v @]+ 2582 -5 [
- x2@]  +awma2a -e* [yt -

)13 51

Inserting eq. 32 into egq. 31 and

comparing the result with eg. 51 ,
we conclude that to the same order
of expansion , the cumulant expan-
sion contains more terms than the

Taylor expansion If those Terms

in eg. 51 which are linear Just in
. )
or Just in € are kept and  the
rest are neglected, then eg. 51

exactly reduces to the Taylor expan-

sion However , the cumulant expan-
sion is much simpler and the calcu-
lation is done just by considering
the energy gap 6‘ between the two
electronic states and evaluating its
correlation functicn.The method has
been used to calculate line
ing in clusters{G),molecular elec -
tronic spectral(8),and overtone line
shapes (13) .

COMCLUSTON

As a result of making the Born-

broaden--

53

Appendix 1

oppenheimer and harmonic oscilla -
tor approximations to the melecuar
Hamiltonian , and making the Condon
approximation to the electronic
transition moment , we have derived
an easily calculable expression for
the vibronic absorption spectrumof
a diatenic wmoleccute within the first
order time dependent perturbation
theory . we have explicitly inc —
luded the equilibrium shift and the
freguency shift in our calculatins.
The calculations are done exactly,
31 ;

resulting in eg . and pertur-

batively (using the second order
cumulant expansion ) , resulting in

eqg 51 A numerical culculation

for our theory will be postponded

to a new communication.
:The Beer-Lambert law

The reduciion ot radiation inten -
sity due to passage through the la-
yer is proporticnal to the thick =~
ness of the layer,the concentration
of the absorbing molecules,and the
intensity itself.If the constant of
(wl,

proportionality is written kif

we may then write

wik, _(w)dl Al

3f
intengratina over the len-

—gdI(w )=N,I(
i
Wniclh Ly
gth of the sample,it gives
-N.k. A2
( w)exp| Nk,

I{w)= (e )g ‘

IO
where IO( w)ils intensity of the ini-
tial beam.Expressing the concentra-
tion of the sample ciin moles per
liter,and the thickness 1 in meter,

we may then write AZ as
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Log[l(u\)/IO(u\ﬂ = —LOUci[(lO/Lnla) 4 -R.W.HNicholls and W.R.Jarmain ,
Nﬂkif(m )Jl :»lOOCi gif(w )1 a3 PY'OCPhySSOCAa§§5253(1955)
Where N, is the Avogadre's number, 5 -See, for instance,J.J. Sakurai,

and the molar extinction coeffi - Modern Quantum Mecnanics ( The
cient gif( w) is defined by Benjamin/Cummings Publishing
€. (w) = (10/Lnl0) N K. _(w ). Ad Company,Inc.,1985),P. 334
if A1t
Appendix 2: Justification of ec .46 6 -R.islampour and S.Mukamel , J.
Using tue symmetry property Chem. Phys. 80 ,5487 (1984)
<U(THD(T +0)> =<O(t —o)fit )> Chem. Phys.Lett.107 ,239(1984)
we may write /7 -R.C.0'Rourke,Phys.Rev.81, 265
r= /7T at; JU1aT,<0(r,)u(r))> (1953); H.D.Vasileff,Phys .Rev.
] 0 Py A~
= 7" at S lats v, - 96 , 603(1954)
0 loo 2 N R 1 2 -
- T a7, I aTt<uo)u(r' )»>. 8 -5.Mukamel,5.Abe, Y.J.Yan , and
0 T
The domain or the last integral R.isiamrpour,d.Phys. Chem . 89,
extends over the shaded area in tuc 201(1985)
following figure 9 -M.Lax , J.Chem.Phys.20 , 1752

(1952)

10-R.Kubo, in Fluctuation,Relax-
tation,and Resonance in mag -
netic systems,Edited by Ter -
Haar(0liver and Boyd , Udin -
burgh,1962),P.23

11-R.P. Feynman,Phys.Rev.84, 108

(1951)
12-G.W.Ford,M.Kac,and P.Mazur,d.
Changing the order of integratior Math. Phys. é.!504(1965)
we may then write the integral as 13-S.Mukamel and R.Islampour,Chem.
1= s" at' 1} GTETOUC T > Phys.lLett. 29 , 161(1984)

_ 0 T 1 ) ~ "_ f
= g AT (T~ T"<0 U7 ">
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