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ABSTRACT: A mixing rule for the mixtures of hard-spheres s presented which
can be reduced to the standard van der Waals mixing rule at low densities. The
effectiveness of the mixing rule for the size and energy parameters of Lennard-
Jones fluids are examined by combining them with an equation of state to calcu-
late thermodynamic properties. The results of calculation are compared with the
molecular dynamic simulation data and the superiority of the present mixing rule
over the standard van der Waals mixing rule is demonsirated.
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INTRODUCTION

According to of the molecular corresponding state
theory {1-3] the interaction of a molecular pair can
be expressed in terms of a universal function F,
which can be represented by the following equation:

u/e = Ffr/o)

where u is the molecular pair interaction potential
function and ¢ and ¢ are the pair size and energy
parameters in the potential function.

In application of the corresponding state theory
to the fluid mixtures, it is necessary to assume the
same functionality F, for each pair of molecules and
by considering the mixture as a hypothetical pure

fluid, the size and energy parameters (o, and &) for
the mixture can be expressed in terms of parameters
for pure components using appropriate mixing rules.

Several mixing rules have been presented [4,5]
among which the standard van der Waals mixing rule
derived by Leland et al. [6,7] based on statistical
mechanical concepts, has been widely used for the
calculation of thermodynamic properties [8-12]. How-
ever, the van der Waals mixing rule is unable to pro-
duce satisfactory results due to the limited validity of
inherent assumptions as shown by several workers
[13,14]. In our previous work on themodynamic pro-
perties calculations of real fluids it was shown that
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van-der Waals mixing rule fails especially at high
reduced densitiecs where the molecular diameter
ratios of the components are large [15].

In this work, a new mixing rule for the size
parameter is presented which can be reduced to the
standard van der Waals mixing rule at low densities.
The effectiveness of the proposed mixing rule is
examined by comparing the calculated themodynamic
properties with the simulation data for the same pro-
perties for the Lennard-Jones fluids.

THEORY

The standard van der Waals mixing rule can be
obtained if one considers the second virial coefficient
of a mixture, which from statistical mechanical
theories is derived as [16]:

B, = ‘? F‘ xx%B;(T) (1)
where x; and x; represent the mole fraction of com-

ponents i and j. For a pure hard-sphere fluid the
second virial cofficients is expressed as [16]:

B(T) = 270" /3 2)

From Eqgs. (1) and (2), a mixture size parameter can
be derived in the following form [5,12]:

ou = Z Zxxo] 3)
where, g;; is defined as:
o; = (0 + 0)/2 (4)

In Eq. (4). 0; and o; , respectively are the molecular
diameters of components i and j, considered as
hard-spheres.

In the previous work [17], based on structural
considerations as well as the concepts of partial
segregation theory [15] it was shown that it is
reasonable to propose an effective diameter o, for a
pure hard-spheres fluid in the following form:

o, =0 (1+ ay) (5)

where, ¢ is the actual hard sphere diameter, y is a
packing fraction which takes the structural consi-
derations into account and « is an adjustable para-
meter, (for a=0, o’z= o and hard-sphere assumption
is acceptable). The packing fraction, y can be expres-
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sed in terms of p the actual density as [18]:
y=pxdols (6)

From Egs. (3) and (5) and considering the mix-
ture of hard-spheres as a hypothetical pure fluid, the
effective size parameter can be written as:

a1 n
e = 2 Zxxoj(l + ) (7
where y is the packing fraction for the mixture of
hard-spheres and is expressed in the following form:

y= 2 @/)p ®

To apply the mixing rule presented in Eq. (7), the
adjustable parameter a should be evaluated by an
exact equation of state for the mixture of hard-
spheres.

Mansoori et al. [18] presented the following
equation for the residual Helmholtz free energy for
the mixture of hard-spheres:

A, 3 Y +Y + +2Y 31—y ) —
_Nkl_uf(l"' I 2 Y3) (3Y2 2 3)(1 Ym) !
3 1 -

* 7(1—11‘12 3 Y3)(1—¥e) —2(Y;— Din(l-y,)

®)

where, y is defined the same as in Eq. (8) and Y, , Y,
and Y, are functions of packing fractions [18]. For
the pure hard-spheres fluid, Eq. (9) can be reduced
o:

=y = /(1 ) (10

According to the idea of the effective diameter for
the hard-spheres presented in this work, the actual
packing fraction y, , in Eq. (10) should be replaced
by an effective packing fraction y, , which is obtained
from Eqgs. (5) and (6) as:

Ye = (2/6)p0’(1 + ay) (1n
Then for the mixture of hard-spheres, one will have:
Yne = (7/6)005(1 + ay,) (12)

To calculate « , we consider the mixture as a
hypothetical pure hard-sphere fluid and calculate y_
from Eq. (12). Then, y,. is used in Eq. (10) to
calculate the residual Helmholiz free energy, A, , for
the hypothetical pure hard-spheres fluid. The catcu-
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lated A_ is used in Eq. (10}, to drive an equation for
«. The derivation is not explicit, however, an approxi-
mate equation for & can be presented as [15]:

@ =22 xx [0 = 0)/0;]'i/0) (13)
On substituting for a from Eq. (13) in (7) and using

Eg. (8), the following mixing rule can be obtained for
the size parameter of the hard-spheres mixture.

T

=X xxol (1 +E (/65 p0°) =  xx
i i i j<i

(CARRAVEARCALA (14)

To calculate thermodynamic properties, the pro-
posed mixing rule can be combined with an appro-
priate equation of state for the pure hard-spheres
fluid, In the next section this point will be discussed
in details.

Hard-spheres mixture calculations

The compressibility factor of pure hard-spheres as
proposed by Carnahan and Starling [19], can be
expressed in the following form:

Z=(1+y+y +yy0 —y) (15)

Combining the mixing rule as proposed in Eq. (14),
with the Carnahan-Starling equation of state, the
following equation for the hard-spheres mixture can
be obtained:

2 3 3
Z= (1 + yme + ¥ e yl;ne)/(l - yme) +(4 - 2yme)/

(1 = ¥’ 1L @y y0)] (16)

Table 1 shows the compressibility factor for an
equimolar binary mixture of hard-spheres compared
with the results of molecular dynamic (MD) simula-
tion [20,21] and those of equation of state by
Mansoori et al. (MCSL) [18]. According to this table
the compressibility factor using the proposed mixing
rule s predicted with the same accuracy as those of
MD and MCSL. It is worth noting that the MCSL is
an accurate but complicated equation of state for
hard-spheres mixture. Therefore, the simpiicity and
accuracy of the proposed mixing rule is an attribute
for promoting its applications over the MCSL for
thermodynamic properties calculations of hard-
sphere fluids.
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Table 1: The compressibility factor for a binary mixture of
hard-spheres for (x;= x,= 0.5}

/Method y= 0.1571 y= 02618 y= 0.3665\
o, jo, =11
MD 1.96 3.17 5.64
MCSL 1.96 2.25 5.69
This work 1.96 3.25 5.68
g,/o, = 5/3
MD 1.87 3.04 5.24
MCSL 1.88 3.04 5.21
\This work 1.88 3.04 518 J

Table 2 indicates the comparison between the
calculated thermodynamic properties of an equimolar
binary mixtiure of hard-spheres by the proposed
mixing rule and the MCSL equation of state [18],
and the results are compared with the MD data
[{20,21] where the applicability and simplicity of the
proposed mixing rule is clearly demonstrated.

Fig. 1 shows the calculated compressibility factor
of the mixture with (g,/0,= infinity) by the proposed
mixing rule and the MCSL equation. This figure
indicates the accuracy of presented mixing rule for
systemes with large diameter ratios and high densities.

In Figs. 2-5 the calculated excess properties of the
binary mixtures of hard-spheres for the entire range
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Fig. 1: Calculated compressibility factor (Z), of the mixture
(0,/0,= infinity} vs. reduced density (p*), by the propesed
mixing rule and MCSL equation.
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Table 2: Comparison of calculated thermodynamic properties of binary mixture of hard spheres (x;=
xy%= 0.5, 0,/0, = 3) by this work, MCSL equation of state and molecular dynamic (MD) data.

4 Properties Method y= 0233 | y= 0358 y= 0.500 N
Z MD 2.37 3.36 9.77
MCSL 2.37 3.36 9.90
This work 2.38 3.37 9.68
—AZ MD 0.46 0.84 3.62
MCSL 0.46 0.85 3.72
This work 0.46 0.83 3.95
—s"/NK MD 0.14 0.31 1.52
MCSL 0.14 0.31 1.52
This work 0.14 0.31 1.52
AS®/NK MD 0.12 0.26 1.07
MCSL 0.13 0.26 1.06
This work 0.13 0.26 1.04
G"/NK MD 1.51 2.67 10.29
MCSL 1.51 2.66 1039
This work 1.51 2.69 10.19
—~AG®/NK MD 0.60 1.13 4.77
MCSL 0.59 111 4.78
\ This work 0.57 1.08 498  /

of mole fractions are compared with the results of
van der Waal (vdW) mixing rule. It is worth noting
that for =0, the proposed mixing rule is reduced to
vdW mixing rule. These figures show that the pre-
sented mixing rule has better accuracy than the vdw
mixing rule.

E
Fig, 2: Comparison of calculated excess entropy (S ), for the
binary mixtures (G,/0,= 3) of hard-spheres vs. mole fractions
of component 1,(x,).

84

Lennard-Jones mixtures calculations

For hard-spheres fluids only the repulsive term in
the potential energy function is considered. To apply
the proposed mixing rule to the real fluids an energy
parameter mixing rule based on a potential function
containing both attractive and repulsive terms is
required.

¢ [

E
Fig. 3: Comparison of calculated excess entropy (S ), for the
binary mixtures (5,/0,= 6) of hard-spheres vs. mole fractions
of component I,(x,).
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Fig. 4: Comparison of calculated excess Gibbs free energy,
E

(G ) Jor the binary mixtures (G,/F,= 6) of hard-spheres vs.

mole fractions of component 1,(x,).
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Fig. 5: Comparison of calculated excess Gibbs free energy,
E

(G ) for the binary mixtures (G,/0y= 3} of hard-spheres vs.

mole fractions of component 1,(x,).

The potential energy function which is used here
is the Lennard-Jones function [22,23]:
g2 T .6
2 = (D) (17)
where, ¢ and ¢ are size and energy parameters
respectively.

The standard van der Waals mixing rule for
energy parameter has been presented as [5]:

603 = % g xixjeijo% (18)

Y

u = 4e [(

where:
g + ag.

— i _ 12
a!j = —2L and Eij = (eiej)

On combining Eqs. (14) and (18) the energy
parameter £ for a mixture of hard-spheres will be
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obtained as:
en = X xxe05/ L2 x50y {14(2 Zpxo;
] ] L I

1

I GRAACTE

(19)

Here again an equation of state is needed in order
to calculate the thermodynamic properties. Nicolas
et al. [24] proposed an equation of state which can
be fitted to the Lennard-Jones potential function for
pure fluids. Therefore we decided to extend the
application of Nicolas et al. [24] equation of state to
the Lennard-Jones mixtures.

The final form of the equation of state which utili-
zes the mixing rule presented in Eqs.(14) and (19) is:

PX(T*, p*)= Py(T* , p*)+(p /02)(30% [ 9p)[P,
(T*, p*)—p*T*] (20)

where P*= Pa’ [, , p*= pas, and T*= kT/e_ are
the reduced pressure, density and temperature respec-
tively, and P; refers 10 the pressure obtained from
the Nicolas et al. [24] equation of state for a pure
hypothetical fluid.

The Helmholtz function which can be derived for
the mixture, from the eqution of state, is of the form:

A, = NKT Z xlnx; + A(KT/e,, , poy) 1)

where A(kT/e, , po’;']) is a Helmholtz function
expressed in terms of energy and size parameters for
the mixture (considered as a hypothetical pure
Lennard-Jones fluid).

The residual Helmholtiz free energy for the
mixture and the residual chemical potential for
component(i} are defined respectively as:

A=A, - Aj (22)
fuir = wi _ru:d)

The residual chemical potential can be obtained from
Egs. (21) and (22) by:

Hip = (0A; / aNi)T,V,Nj (23)

Thus, the final result is:

Hig=Png N8 ON (W, /€,) + (307, [ IN 0 (PV),,
(24)
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where #?m refers to the reduced chemical potential of
the hypothetical pure component. In the dimension-
less form the above equation can be written as:

My Sty +N(OEL [INY(UL/80) + (P /) (N0

(903,/9N) (25)

*

* - . *
where ;. and u_ = are the dimensionless residual

chemical potential and internal energy defined as:
u, /e (26)

For a binary mixture, where x; approaches zero
the residual chemical potential can be expressed as
(4,20,21]:

* *
‘ui.l'=lu'ir/£mandujr:

lim ¢;,/KT = In(H;/pkT) @7)
fim

where H is the Henry’s law constant.

Using the above considerations the Henry’s law
constant can be obtained for the binary mixture of
[ennard-Jones fluid in the following form:

In(H, /pkT)=p, /KT+N(e . / N} (u;. /KTE; ) +(Z; -1)
(N/a}){(30,,/IN)) (28)

Finally after a long but straightforward manipuiation
the Henry’s law constant can be presented as:

In(H;/pkT)= #ir/kT'i‘(Ujr/kT)[-z(h—1)_(_7[‘9 /6)
(0, 1)’ +2(Eh—D](Z,~ D[2(a— 1) + (0 /6)(0;— 1) ]
(29)

where h=(ajj/ajj)3 and f= ¢;/&; .

Figs. (6) and (7) show the calculated dimension-
less chemical potential by Eq. (25), for a Lennard-
Jones binary mixture with £, /€,=1, p(xlosu+
x,00)= 07, KT/e5,= 1.2 and (9,,/05) = 1.5 com-
pared with the MD simulation data. As it is seen the
presented mixing rule has a higher accuracy com-
pared to the van der Waals’ mixing rule.

Fig. 8 shows the Henry's law constant calculated
with &,,/60,=1, p0o= 0.7, KT /e,,= 1.2and 0, /0,,=1
by Eq. (28) and that obtained from van der Waals
mixing rule compared with the MD simulation data.
Again it is seen that the proposed mixing rule in this
work has a betier accuracy.
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Fig. 6: Comparison of variation of dimensionless chemical
potential of component 2, (H,/E,) vs. mole fractions of
component 1, {x).
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1
Fig. 7: Comparison of variation of dimensionless chemical
potential of component I, (i4,/&) vs. mole fractions of
component 1, {x ).
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Fig. 8: Comparison of variation of Henry’s law constani as
3
In(HVIKT) vs. k= (0| /05) .

Figs. 9 and 10 show the variation of compressibi-
lity factor for an equimolar Lennard-Jones mixture
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with £;,/6,,=1and p*= 0.8 at T= 270 K and T= 200
K respectively. As it is seen the variations have the
same trend as the simulation data.

4.6
 Stmulation data T=270 K|
440
4.2 7
y/
4 r
- This work
s} . [ S
- —_—-_-_.’-_‘
vdw -
16 A X > ]
1 1.2 1.4 1.6 1.8 2
% 1

Fig. 9: Comparison of variation of compressibility factor, (Z)
V5. Uonf0) 1 for &= Eop at T= 270K

CONCLUSION

It was shown that application of the mixing rule
based on structural considerations can lead to cal-
culated thermodynamic properties with a better accu-
racy than the standard van der Waals mixing rule.

Since the mixing rules are derived from para-
meters of potential function, the accuracy of the
calculated thermodynamic properties depend on the
capability of the potential function in expressing the
molecular intractions. Therefore, using a more realis-
tic potential function can result in an effective mixing
rule, hence a more accurate prediction of thermo-
dynamic properties.

58
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Fig. 10: Comparison of variation of compressibility factor, (Z)
vs. OpnfUy, for £,,= £, at T= 200K.
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List of symbols and abbriviations

A Helmholtz energy

B Second virial coefficient

f (e/5)

F, Universal potential energy function

H Henry’sslaw constant

h (0y/0)

K Bolizmann constant

MCSL Mansoori et al. equation of state

P Pressure

PB Reduced pressure for Nicolas et al. equation
of state

r Molecular distance

T Absolute temperature

u Internal energy

X Mole fraction

y Packing fraction

Y,,Y, Functions in MCSL equation of state
and Y,

z Compressibility factor

Greek Letters

a Adjustable parameter

£ Energy parameter

J/ Chemical potential

P Density

g Hard sphere diameter and size para-
meter

Superscripts

i Ideal

* Dimensionless

Subscripts

e Effective value

i Components i and j

me Mixture effetive value

r Residual property

0 Hypothetical pure component
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