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ABSTRACT: Milk ultrafiltration is a membrane process, which is highly complex innature. The 
cost effectiveness of the process depends heavily on the flux permeate and the total hydraulic 
resistance of the membrane. In this work, a comparative study for the prediction of the performance 
of milk ultrafiltration with ANN and statistical method has been carried out. The result reveals that 
both methods carry out the prediction with a high degree of accuracy. However, the statistical 
method, contrary to neural nets, is both costly and time consuming and the accuracy of the data are 
also in doubt, as the operating conditions are not consistent throughout each of the test runs. The 
result also reveals that there is a good agreement between the predicted fluxes permeates and the 
total resistances of this work with the actual values. The findings of this study also shows that the 
artificial neural nets technique can be applied as a powerful tool and a cost and time effective way 
in predicting and assessing the performance of  milk ultrafiltration process. 
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INTRODUCTION 
Ultrafiltration process is widely used in the food, 

pharmaceutical, polymer, biotechnology industries and 
purification plants. It is the process of separation of heavy 
molecules solutes in a light solvent or a suspension 
 
 
 

of colloidal substance into two streams of different 
concentration. This is accomplished using a porous 
membrane subjected to a hydrodynamic pressure 
difference as a driving force. The separation are carried  
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out according to the sizes and the two most widely used 
apparatus in the field are spiral wound module and the 
flat plate [1, 2]. The flow of feed stream in the process is 
crossways and alongside the membrane. Although the 
process is simple, it does not need a high pressure or 
temperature and low cost of its energy consumption [3], 
different factors causes the process to be less compatible 
with the rival techniques (i.e., the reduction of the fluxes). 
The efficiency and the cost of the process are highly 
dependent upon the movements of the permeate through 
the membrane and the total membrane resistances [4], 
which in turn depends on different factors. The type of 
the membrane, process parameters (i.e., pressure, 
temperature, and the feed flow rate) and physical and 
chemical properties of the fluid are the main decisive 
factors affecting stream fluxes, concentrations and the 
total membrane resistances [5]. The main limitation on 
the practical aspects of the UF process usage is the drop 
in efficiency of the membrane due to the gel polarization 
and fouling phenomena. UF milk fouling is a complex 
phenomenon and still posing problems and research is 
still being carried out in this field. Owing to 
sedimentation of elements on the surface and inside the 
membrane, the effective usage period of membrane will 
be reduced and consequently the cost of the cleaning will 
raise accordingly [6]. In fact, through the exclusion of the 
membrane fouling, one can increase the efficiency of the 
UF process. The cleaning operation takes about 2-3 hours 
daily in the industry. Therefore, the understanding of the 
phenomenon requires modeling and the simulation of the 
membrane process for optimization purposes, which can 
have a great advantage both from economical and 
practical point of view. 

In this research, two methods that are proper substitute 
for the physical and phenomenological modeling of the 
process and in addition a statistical method have been 
chosen to predict the efficiency of the UF process. This 
method is both time consuming and expensive. 
Meanwhile this leads to a simple calculation of the 
membrane area though the reliability of the result is 
questionable, because the conditions are not the same in 
all stages of the process. A precise estimation of the 
membrane area can be accomplished by using the 
equations describing the dependence of permeate flux and 
fouling on the process variables. In fact, there  have  been 

(1) Molecular Weight Cut Off 

some theoretical approaches to predict the ultrafiltration 
performance of colloidal solutions (e.g. milk). These are 
based on some models such as mass transfer model (film 
theory), gel-polarization model, osmotic pressure model, 
boundary layer-adsorption model, Brownian diffusion 
model, shear-induced diffusion model, inertial lift model 
and surface transport model [4]. In addition to the 
complexity of mathematical equations involved, each of 
these models has a number of limitations: 

- They demand some experimental data for determining 
the input parameters. Perhaps this is always possible in 
practice, but the equipment required are especially 
sensitive instruments that might not be readily available. 

- None of these can describe the full flux-time 
behavior of process; they often predict the steady or 
pseudo-steady-state flux. 

- Each one has been shown to be valid for certain 
feeds under special conditions. 

Therefore, there is always a need for alternative 
methods of predicting membrane process performance. 
One of these methods is Artificial Neural Networks 
(ANNs). Neural networking involves algorithms under 
which information is accumulated in programmed objects 
that are capable of learning through much iteration using 
simulated or real data. This form of artificial intelligence 
can handle problems for which relationships are less 
known compared with relatively highly structured expert 
systems or equation-based approaches. Neural net models 
cannot linear, polynomial and interactive terms without 
requiring the researcher to model them, but can include 
available theoretical or empirical knowledge about the 
process. Therefore, it is capable of signal processing, 
modeling, time series forecasting, classification and 
recognition [7]. The neural network model has also been 
used for obtaining an estimation of the permeate flux and 
resistance during reverse osmosis of the ethanol and 
acetic acid and ultrafiltration of the pulp bleach plant 
effluent [8]. The ANNs predictions compared with the 
finely porous mass transfer model [9]. In colloidal 
systems such as milk, physical and chemical properties 
(i.e., pH and fat milk) have a great effect on the behavior 
and the efficiency of the UF process owing to molecular 
interactions. Furthermore, the hydrodynamic factors such 
as transient membrane pressure (TMP), temperature  
and the  pore  size of   the  membrane (MWCO)(1)   have a 
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substantial effect on the process efficiency. Therefore, in 
this work parameters such as temperature, TMP, fat milk, 
pH, time and MWCO as an inputs and the permeate flux 
and the total hydraulic resistance of the membrane as an 
outputs in predicting and assessing the performance of  
milk ultrafiltration process, using the statistical and ANN 
methods. 
 
THEORETICAL 

A neural network is by definition: a system of simple 
processing elements, called neurons, which are connected 
to a network by a set of weights (Fig. 1). The network is 
determined by the architecture of the network, the 
magnitude of the weights and the processing element’s 
mode of operation. The neuron is a processing element 
that takes a number of inputs (p), weights them (w), sums 
them up, adds a bias (b) and uses the result as the 
argument for a singular valued function, the transfer 
function (f), which results in the neurons output (a). 

The most common networks are constructed by 
ordering the neurons in layers, letting each neuron in a 
layer take as input only the outputs of neurons in the 
previous layer or external inputs. To determine the weight 
values, a set of examples is needed of the output relation 
to the inputs. Therefore, a set of data was produced 
describing the whole operating range of the system. The 
knowledge of the neural network is encoded in the values 
of its weights. The task of determining the weights from 
these examples is called training and is basically a 
conventional estimation problem. For this purpose, the 
back-propagation strategy has become the most 
frequently, and here, used method that tends to give 
reasonable answers. Standard back-propagation is a 
gradient descent in which the following relation modifies 
the network weights: 

( ) )n(x)n()n(w1nw iiijij ⋅δ⋅η+=+                              (1) 

where )1n(w ij +  is the weight of i to j element in 

(n+1)th step and )n(w ij are same as weight in nth step. 

Local error )n(iδ  is evaluated from )n(e i  where n is 

step size and η  is the learning rate and is equal to one 

[10]. The local error can be evaluated from the following 
relation: 

)n(y)n(d)n(e iii −=                                                     (2) 

 
 
 
 
 
 
 
 

Fig. 1: The architecture of the neural network. 
 

The term back-propagation refers to the manner in 
which the gradient is computed for non-linear multiple-
layer networks. The typical performance function that is 
used for training feed forward neural networks is the 
mean sum of squares of the network errors between the 
network outputs and the target outputs [11]. In this work 
the batch gradient decent with momentum algorithm [12] 
was used as the training function. The momentum 
algorithm is development state of the gradient decent that 
weights learning that are obtained from the following 
relation: 

( ) +⋅ηδ+=+ )n(x)n()n(w1nw iiijij                             (3) 

                    ( )( )1nw)n(w ijij −−⋅α  

where α  is the momentum coefficient which its value 
ranges between 0.1 to 0.9. Equation (3) and other training 
functions usually give good results in neural network 
modeling of milk ultrafiltration process. The performance 
of the neural network model evaluated with the root mean 
square error (RMSE) and determination coefficient (R2) 
between the modeled output and measures of the training 
data set, can be computed from the following relations: 

( )

( )∑

∑
−

−
−=

P
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N
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=                                         (5) 

where obsx , estx  are experimental and estimated 

values, respectively, and N is the number of data. 
When the RMSE is at the minimum and R2 is high 

(i.e., ≥ 0.8), a model can be judged with a high degree of 
accuracy [13]. Secondly, the comparison between the 
modeled    output    and    the    measured    output    must 
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heuristically be reviewed. These methods were occa-
sionally used in neural network model validation [14, 15]. 
Before the best model was found, a trial and error process 
was followed where different inputs and inputs-
combinations were tested and the best input combination 
was selected. Hereby all reasonable combinations of 
input parameters were validated. Finally, the architecture 
of the neural network model was optimized by applying 
different amounts (1–10) of hidden neurons. When the 
increase of hidden neurons did not improve the model to 
any further extent, the model with the smallest amount 
and maximum performance was chosen as the best 
model. The choice of a specific class of networks for the 
simulation of a non-linear and complex map depends on a 
variety of factors such as the accuracy desired and the 
prior information concerning the input–output pairs. The 
most popular ANN is the feed forward multi-layer 
perceptron, where the neurons are arranged into an input 
layer, one or more hidden layers, and an output layer. 
Only one hidden layer was used in this study because of 
the proven non-linear approximation capabilities of 
multi-layered feed forward perceptron network for an 
arbitrary degree of accuracy [16]. Each neuron consists of 
a transfer function expressing internal activation level. 
Output from a neuron is determined by transforming its 
input using a suitable transfer function. Generally, the 
transfer functions are sigmoidal function, hyperbolic 
tangent and linear function, of which the most widely 
used for non-linear relationship is the sigmoidal function 
[17]. The general form of this function is given as 
follows: 

( )
JxJJ

e1
1xfy
−+

==                                                      (6) 

This sigmoid function maps input into output in a 
range between 0 and 1, distributed as an S-shaped curve, 
so the input and output data should be scaled to the same 
range as the transfer function used. Normalization of 
inputs leads to avoidance of numerical overflows due to 
very large or very small weights [17]. Therefore, data are 
normalized by the following relationship: 

( ) L
minmax

min
LUn VV

VV1V ∆+
−

−
∆−∆−=                            (7) 

where nV  is the normalized value of V. The Vmax and 

Vmin are the minimum and maximum values of V, 
respectively. From experience, the authors have found 

that a better fit will be achieved if U∆  and L∆  (small 

margins) are kept a value of 0.05 [9]. In this work, the 
software that was adopted for the ANNs modeling was 
Matlab Toolbox version 7.0. 
 
Total hydraulic resistance and permeate flux 

By assuming that the osmotic pressures are small, the 
total hydraulic resistance [Rt] can be expressed by 
Darcy’s law [3]: 

PP J
TMPRt
⋅µ

=                                                                   (8) 

and the permeate flux by [18]: 

Rt
TMPJ
P

p ⋅µ
=                                                                   (9) 

where Pµ  is the permeate viscosity, Jp the permeate flux, 

and TMP the transmembrane pressure that can be 
calculated from the following equation: 

P
oI P

2
PP

TMP −
+

=                                                    (10) 

where IP  , oP  and PP  are inlet, outlet and permeate 

pressures, respectively. 
 
EXPERIMENTAL  SET-UPS  AND  PROCEDURE 

In this research, a membrane pilot plant from Biocon 
Company has been utilized for the data acquisition 
purposes. This apparatus is comprised from a feed tank, 
centrifugal pump, flow meter, membrane module, two 
pressure indicator, tubular heat exchanger, digital 
thermometer and a control valve (Fig. 2) which its 
specification are highlighted in table 1. In order to 
regulate the operating conditions for each test run, some 
distilled water was first introduced to the system for  
10 minutes to check some parameters for the accuracy  
of the data. Then to run the experiment, the sample  
milk powder (with a constant milk fat of 8.5%) and hot 
water at 50 oC was mixed and added to the 12 liters feed 
tank at a constant rate of 15 lit/min throughout the 
experiment and letting the operation to be continued for 
30 minutes. At the end, cleaning operation is carried out 
according to the instruction manual (i.e., cleaning-in-
place or CIP). Care must be taken to cease the washing 
cycle  when  the  difference  between  the  exit  and   inlet 
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Fig. 2: Schematic flow diagram of a UF pilot plant. 
 
water fluxes are less than 2-3 percent. Otherwise, the 
fouling has not been removed and the washing process 
must be repeated. 

In this work, the affect of different parameters such as 
the transient membrane pressure (TMP), operating 
temperature, fat milk and pH on the flux permeate in m/s 
(Jp) and the total resistances in m-1 (Rt) has been analyzed 
(table 2). To obtain this objective, a total of sixteen-test 
run have been carried out and during each run the feed 
flow rate and concentration of the sample milk fat are 
regulated and kept constant using pasteurized and 
homogenized cream (28-30% fat). In order to measure the 
fat milk, a device called Lactostar from Funko Gerber 
Company was used and the measurement was repeated 
for three times at 25 oC. Furthermore, for regulating the 
milk pH an amount of 1% normal lactic acid have been 
used. To measure the sample milk and washing solution 
pH, a pH meter called Jenway (model 3010) was also 
adopted in this work. 

 
STATISTICAL  MODEL 

Although some research has been  carried  out  on  
theapplication of the milk UF [19, 20], but they have only 
dedicated their work on the hydrodynamics, the 
membrane type, configuration and its efficiency. In this 
work experimental data have been analyzed using two 
different software (i.e., Excel and Matlab) and the 
permeate flux and the total resistances have been 
predicted for different temperatures and plotted versus the 
time (Figs. 3 and 4). 

The   accuracy   of   the   prediction   with   respect  to 

Table 1: Specification of UF pilot plant. 
 

Membrane material Poly sulfone amid 

Membrane module Spiral wound 

Membrane effective surface area 0.33 m2 

MWCO 20 kilo Dalton 

Permissible pressure range 0.5-3 atm 

Permissible temperature range 5-55 oC 

Permissible pH range 2-11 

 
correlation coefficient index (R2), standard deviation, 
statistical mean have been presented in table 3. As the 
table 3 demonstrates, the accuracy of the predictions is 
quite high. 
 

NEURAL  NETWORKS  MODELING 
In this research, the effectiveness of UF milk 

modeling has been assessed using a multi-layer 
perceptron (MLP) and neural nets software (i.e., Matlab), 
for learning purposes different structures have been 
adopted, and the results achieved are compared together. 
The structure of neural nets is constructed in a way that a 
weak prediction and the time learning process 
expenditure could substantially be reduced by lowering 
the number of hidden layers [16]. Furthermore, neural 
nets with different structures can also reduce the learning 
procedure and to converge the results in the lowest 
number of iteration and to obtain a better prediction for 
the new data. As a typical example, the results obtained 
from feed forward back propagation neural nets (or multi-
layer perceptron) have been presented in Fig. 5. In this 
work, the MLP have made with 3 layers that 1 neurons in 
first layer, 10 neurons in second layer and 1 neurons in 
last layer. The momentum coefficient and learning rate 
are 0.7, 1, respectively. 

The total numbers of data utilized in this work are 
about 2500. From this about 30 percent of the input-
output data was selected in a random manner for training 
(number of data 860) and the rest of the data were used to 
test (number of data 1360) and cross validate (number of 
data 280) the outcome and assess the error resulted from 
it. The results reveal that the prediction accuracy from the 
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Table 2: Parameter range and operating conditions in this work. 

Parameter range  
 

Variables 
Press. diff. (KPa) Temp. (oC) Fat% pH 

51 40 0.090 6.53 

101.33 40 0.095 6.54 

152 40 0.090 6.54 

203 40 0.095 6.54 

TMP 

253 40 0.090 6.54 

152 30 0.110 6.57 

152 40 0.090 6.54 Temperature 

152 50 0.120 6.60 

152 40 0.090 6.54 

152 40 1.190 6.56 

152 40 2.400 6.6 
Fat% 

152 40 3.260 6.53 

152 30 2.400 6.67 

152 30 2.380 6.43 

152 30 2.390 6.25 
PH 

152 30 2.420 5.97 

101.33 40 0.095 6.62 

101.33 40 0.100 6.55 MWCO 

101.33 40 0.090 6.59 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Rt vs. time (TMP=152, Fat=0.1%, MWCO=20 and 
T=30 oC) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Jp vs. time (TMP=152, Fat=0.1%, MWCO=20 and 
T=30 oC) 
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Table 3: Prediction accuracy from the statistical method. 
 

Jp (observed) Jp (statistically) Rt      (observed) Rt (statistically) 

Mean 5.6857E-06 6.35937E-06 3.61429E+13 3.10434E+13 

R2 0.9802 0.9961 0.9442 0.8965 T=40 oC 

RMSE 7.031E-07  5.10647E+12  

Mean 5.7095E-06 6.21804E-06 5.40714E+13 5.01762E+13 

R2 0.9739 0.9961 0.9766 0.9979 TMP=150   (Kpa) 

RMSE 5.1513E-07  3.98463E+12  

Mean 0.0000055 6.1303E-06 3.8181E+13 2.89843E+13 

R2 0.9273 0.9963 0.9378 0.9977 FAT=3.3% 

RMSE 6.3666E-07  9.23284E+12  

Mean 3.6286E-06 4.26825E-06 3.02952E+13 2.85866E+13 

R2 0.969 0.996 0.891 0.9976 MWCO=20 (Kilo Dalton) 

RMSE 6.4242E-07  1.95407E+12  

Mean 5.0667E-06 5.18966E-06 3.23333E+13 2.74965E+13 

R2 0.9322 0.9964 0.9322 0.9976 pH=6.43 

RMSE 1.3485E-07  4.84049E+12  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Comparison of actual: (a) Jp   and (b) Rt values with statistical and ANN methods at 40 oC 
(Training: Test: Validation = 20: 34: 7) 
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ANN method were quite high and a correlation 
coefficient of about one were obtained  which shows an 
acceptable fitness through an appropriate training and test 
of the nets. The results obtained from nets and the 
experimental values at 40 oC show a high compatibility, 
as shown in Fig. 5. In addition, the correlation coefficient, 
the error resulted from the experimental and predicted 
values of the two methods are presented in table 4. 

Comparative studies have been made between the 
findings of the present research and other workers in table 
5. This comparison clearly shows that the extent of 
prediction of neural modeling are exceptionally well  
with respect to other parameters such as R-square and 
RMSE. In addition, even though it needs less data for 
learning processes in contrast to other models, it has a 
 high ability for modeling the ultrafiltration process. 
Furthermore, comparison between the ANN, physical  
and statistical methods for modeling of ultrafiltration 
process reveals that ANN modeling (apart from its high 
degree of precision for prediction) has also a high  
ability in simulating the dynamic fluxes and total 
hydraulic resistances in the modeling of ultrafiltration 
process. 
 
CONCLUSIONS 

In colloidal systems such as milk, the physical and 
chemical properties such as pH and fat percentage have 
an immense influence on the system due to molecular 
interactions and consequently on the efficiency of the UF 
process. In addition, parameters such as temperature, 
transient membrane pressure and the extent of the pore 
sizes of the membrane has a huge affect on the 
hydrodynamics of the membrane and the effectiveness of 
the process. 

In this research, two methods that are a proper 
substitute for the physical and phenomenological 
modeling of the process and in addition a statistical 
method have been chosen to predict the efficiency of the 
UF process. In addition, the permeate flux and the total 
hydraulic resistances obtained from the statistical method 
and the artificial neural nets technique were compared 
with the actual values. In the training of the nets, about 70 
percent of the input-output data was selected in a random 
manner and the rest of the data were used to test and 
validate the outcome and assess the error resulted from it. 
The result also reveals that one can predict the efficiency 

of the UF process using ANN method with a high degree 
of accuracy that shows an acceptable fitness through an 
appropriate training and test of the nets. In addition, the 
results demonstrate that a simple alteration in the 
architecture of the nets can increase the scope of the 
vulnerability of the solution. On the other hand, the 
statistical method contrary to neural nets, is both costly 
and time consuming and the accuracy of the data are in 
doubt as the operating conditions are not consistent 
throughout each of the test runs. Therefore, the findings 
of this study reveal that the artificial neural nets technique 
can be applied as a powerful tool and a cost and time 
effective way in predicting and assessing the performance 
of milk ultrafiltration process. Furthermore, the modeling 
results exhibited that the dynamic behavior of permeate 
flux, total hydraulic resistance could be well-predicted 
using temperature and time as the input parameters.  
In addition, excellent agreement between experimental 
data and predicted values can be achieved by single 
hidden layer network and limited number of training 
points. As a result, the number of experimental tests that 
needed to be carried out on a pilot or large-scale plant is 
quite limited. 
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Nomenclature 
CR                     Concentration ratio 
FR                 Filtration rate 
I                 Ionic strength 
J              Permeate flux, (m.sec-1

) 

Jini            Initial flux value 
Max          Maximum (logic operator) 
Min          Minimum (logic operator) 
MRD        Mean of relative deviations 
MWCO              Molecular weight cut off, (kDa) 
NE          The number of experimental value 
NT          The number of training data points 
NQ        The number of querying data points 
NV      The number of validating data points 
P               Pressure, (kPa) 
PE             Prediction error 
R    Total hydraulic resistance, (m-1), rejection, (%) 
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Table 4: Correlation coefficient and error resulted for experimental values, statistical and ANN methods at 40 oC. 
 Actual Statistical ANN 

R2 0.9774 1 0.9875 

RMSE  7.7E-7 7.9E-8 Jp 
 

Std 7.659E-7 9.11E-7 7.338E-7 

R2 0.9677 1 0.9864 Rt 
 RMSE  4.19E+12 4.37E+11 

 
Table 5: Comparative studies between the findings of present research and other workers. 

 
Application Input Output NE NT NV NQ NT/NE (%) Accuracy Ref. 

RO of ethanol solution P,T R, J 60 24 36 - 40 MRD(J)=0.011 
MRD(R)=0.075 [8] 

UF of bleach plant 
effluent 

P, V, 
CR R, J 25 24 1 - 96 PE=0.10 

MRD=0.02 [8] 

MF of cane sugar syrup TMP, 
V, t RT - 6 - - - 

R2=0.98 
γ =0.054 [21] 

UF of BSA solution pH, I FR 254 24 230 - 9.45 Emax=0.1081 
Eave=0.0213 [9] 

UF of silica suspensions 
I, 

TMP, 
t, Z 

J 391 46 92 253 11.76 
Emax=0.0302 
Eave=0.056 

RMSE=3.2E-6 
[9] 

UF of waste water T, Jini J 541 - - - - 
Emax=0.0289 
Eave=0.0137 

RMSE=8.9E-6 
[22] 

UF of milk 

TMP, 
pH, 
Fat, 

MWC
O, t, T 

J, RT 2500 860 280 1360 34.4 

Emax=0.0193 
Eave=0.0043 

RMSE(J)=7.9E-8 
R2(J)=o.9875 

Std(J)=7.338E-7 
RMSE(RT)=4.37E11 

R2(RT)=0.9864 

This study 

 
RMSE               Root mean square error 
t                 Time 
T                  Temperature 
Temp          Temperature, (oC) 
TMP               Transmembrane pressure, (kPa) 
R2              Determinate coefficient 
Std       Standard deviations 
V          Flow rate 
Z                 Zeta potential 
 
Greek Letters 
γ              The variation coefficient 
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