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ABSTRACT: An artificial neural network has been used to determine the volume flux and 
rejections of Ca2+ , Na+ and Cl¯, as a function of transmembrane pressure and concentrations of 
Ca2+, polyethyleneimine, and polyacrylic acid in water softening by nanofiltration process in 
presence of polyelectrolytes. The feed-forward multi-layer perceptron artificial neural network 
including an eight-neuron hidden layer has the least error in modeling this non-linear process. The 
overall agreement between the artificial neural network results and experimental data is very good 
for both the volume flux and rejections, because the maximum values of normalized bias and error 
are -0.01122 and 1.0737 respectively. 
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INTRODUCTION 

Water hardness is due to presence of divalent ions like 
calcium and magnesium. The traditional processes for 
water softening include lime-soda and ion exchange 
processes. Membrane softening is becoming an alter-
native to these processes. Nanofiltration process with 
charged membranes can be used for this purpose [1,2]. 

The efficiency and cost of membrane processing is 
dependent on flux and rejection, which are the function  
of membrane type, processing parameters and fluid 
properties. Prediction of flux and rejection with respect to 
variations of these items is desired. The mathematical 
models are necessary for this purpose. Two series of 
models have been represented so far. The first is the 
models based on physical-chemical-structural descriptions, 
which   include    the    models   based   on  the   extended  
 
 
 

Nernst-Plank equation [3-12], frictional models [13,14] 
and capillary model [15,16]. The second is the black box 
models, which include the linear and non-linear 
regression models, irreversible thermodynamics models 
[17-21], and models based on artificial neural networks 
(ANNs). 

ANNs have been applied to a limited extent to 
membrane processes. ANNs have been used to predict the 
evolution of membrane fouling during crossflow 
microfiltration and ultrafiltration of cane sugar and gum 
streams [22]. The effects of the ANN hidden structure 
and training data scatteration on the ANN predictions 
were studied. It was found that five or six experiments 
were required to establish a model under constant 
conditions. In general, satisfactory results  were  obtained  
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from the ANN analysis. The permeate flux and rejection 
for reverse osmosis of ethanol and acetic acid and 
ultrafiltration of bleach plant effluent were predicted by 
ANNs [23]. ANNs predictions were compared with 
results from the finely porous mass transfer model. It  
was found that ANNs were easier to use, more efficient 
from the computational point of view and sufficiently 
accurate for industrial design. Recurrent ANNs and a 
hybrid model (combining a physical model with an ANN) 
were used to quantify the dynamics of baker’s yeast 
crossflow microfiltration [24]. Although the hybrid 
model was more accurate, it was limited by the 
assumptions used in establishing the physical model. The 
time evolution of membrane fouling and transmembrane 
pressure in a ultrafiltration process for drinking water 
were also studied using ANNs [25,26]. It was shown that 
a simple variable such as turbidity was sufficient as a water 
quality parameter to model reversible fouling. Very good 
accuracy from the ANN application was obtained. ANNs 
were applied to predict the rate of ultrafiltration of 
proteins and the dynamic crossflow ultrafiltration rate of 
colloids [27,28]. The careful selection of input variables 
helped in optimizing the ANN training process and the 
appropriate selection of training points helped in 
achieving very accurate predictions of experimental 
results. Recurrent ANNs were used to study the evolution 
of flux and deposit thickness in bentonite suspension 
microfiltration [29]. The recurrent ANNs produced 
satisfactory predictions of flux and deposit thickness. 
Additionally, the ANNs were used to predict flux and 
deposition thickness beyond the experimental period in 
order to find the limiting values of flux and deposit 
thickness. 

Recently, an ANN has been used to predict the 
rejections of single salts and mixtures of these salts at a 
nanofiltration membrane [30]. Predictions for mixtures 
with a monovalent cation and monovalent / divalent 
anions were comparable to those of physics-based 
approaches, and prediction for mixtures with monovalent/ 
divalent cations and a monovalent anion were better than 
physics-based predictions. More recently, ANNs have 
been used and tested to dynamically model and simulate 
crossflow ultrafiltration of milk [31-33]. The aim of the 
research was the dynamic prediction of permeate flux, 
total hydraulic resistance and the solute rejection (protein, 
fat, lactose, ash and total solids ) as a function of 

transmembrane pressure, temperature, pH and fat percent. 
The agreement between the empirical data and the model 
results was excellent with maximum and average errors 
less than 3.61% and 1.06%, respectively. 

Driving force of nanofiltration process is pressure 
drop. Moreover, the aim of this paper is investigation of 
water softening, therefore, concentration of Ca2+ in the 
influent is studied next. Polyelectrolytes react with 
cations in the influent to form complexes which are 
adsorbed on the inner surface of membrane or are 
rejected by the membrane that consequently remain in the 
upstream side of the membrane. Therefore, poly-
electrolytes decrease the volume flux and increase the 
ions rejections. In order to investigate these effects two 
different types of polyelectrolyts are studied in this paper; 
polyethyleneimine, which is a weak base and polyacrylic 
acid, which is a weak acid. 

In this paper, a model based on ANNs is represented 
for the prediction of flux and solute rejection vs. the 
transmembrane pressure, Ca2+ concentration (the criterion 
of water hardness), polyethyleneimine concentration, and 
polyacrylic acid concentration in water softening by 
nanofiltration process in the presence of the above 
polyelectrolytes. 
 
ARTIFICIAL  NEURAL  NETWORKS 

In recent years the application of ANN for modeling 
has been greatly increased. An ANN is a group of simple 
elements, known as neurons, arranged in parallel layers 
which are inter-connected. An ANN is made of input 
layer, hidden layers and output layer. Each layer consists 
of several neurons fully-connnected to the other layer by 
weighted connections. The number of neurons in input 
and output layers is determined by the structure of the 
problem in study. The number of hidden layers or the 
number of neurons in each hidden layer depends on 
degree of desired accuracy and there is also no way to 
determine them systematically. ANNs can be classified 
according to connectivity patterns, number of layers, 
learning rule and transfer functions. 

A feed-forward multi-layer perceptron ANN is 
defined by at least three layers through which information 
flows in the forward direction only. So far it has been in 
use more than other kinds and can provide good results 
[30,34] (see Fig.1). 

Input  layer  transmit  the  inputs  to the neurons in the  
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Fig. 1: Schematic structure of an ANN[34]. 
 
 
 
 
 
 
 
 

Fig. 2: Mathematical representation of a neuron. 
 
hidden layer, thus there is no need for transfer  function. 
All the outputs which has been received from input layer, 
are summed and then are transferred through a non-linear 
transfer function. This is the way, how the output of 
hidden layer is calculated. 

Most useful transfer functions are as: logarithmic 
sigmoid, hyperbolic tangent, simple linear. Generally one 
neuron has more than one input. Fig. 2 shows a neuron 
with multiple inputs. 

Net input (n) is calculated by: 

( )bp*wfa +=                                                               (1) 

Finally output is: 

∑
=

+=+=
m

1i
ii bp*wbw*pn                                         (2) 

The specification of hidden layers is determined by 
trial and error method. The universal approximation 
theory suggests that a network with a single hidden layer 
and sufficient number of hidden neurons can map any 
input to any output with any arbitrary degree of accuracy 
[34]. 

In addition, there are bias neurons accepting no input 
and transmit constant output equal to one. These neurons 
preserve the universal approximation property of the 
network [35]. ANN can be trained and then it can predict 
reliable outputs with high accuracy. 
 
EXPERIMENTAL  DATA 

Each ANN needs the data for training and testing. The 
necessary data are obtained using a recirculating 
membrane testing system with the bipolar flat membrane 
made in Nitto Denko Co. and the University of Tokyo 
[36]. These membranes contain a negatively charged 
layer of sulfonated polyethersulfone and a positively 
charged layer of either polyethyleneimine or quaternary 
ammonium polyelectrolyte. In order to investigate the 
effect of polyelectrolytes, a 50 wt% polyethyleneimine 
solution and polyacrylic acid with a molecular weight of 
70000 were used. Both of these polyelectrolytes were 
obtained from Aldrich Chemical Co. 

Volume flux through the membrane and ions 
concentrations were measured in each experiment. 
Atomic absorption (Pye Unicam, Model SP 191) was 
used for the measurement of Na+ and Ca2+ concentrations. 
Chloride ion concentration was measured by titration 
with silver nitrate. Membrane characteristics including 
pore size and thickness were obtained by scanning 
electron microscopy (SEM). Surface charge density for 
the membrane used in this work was estimated from the 
limited data available in the literature. Values of these 
parameters are 11.6 nm for pore radius, 48 mm for 
thickness, and 0.065 C/m2 for surface charge density. The 
values of ion radius and diffusivities were obtained from 
the literature [16]. 

Four sets of experimental data were obtained, each one 
considers the effect of one parameter on volume flux and 
rejection, while other parameters are constant (see table 
1). The influent in any experiment was including water 
and CaCl2 and NaCl salts. 
 
NEURAL  NETWORK  MODELING  DEVELOPMENT 

The first stage for making ANN is to choose an 
optional structure according to inputs and outputs. Then 
the model must be trained and tested to get the desirable 
outputs. 

As mentioned before, each ANN has input layer, 
output layer and hidden layers in between. The number of  

1 l n 

1 2 h i 

 1 2 3 k  r 
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Table 1: Number of data used for training and testing. 
 

Sets Training Testing 

Set 1 
(effect of pressure drop) 11 10 

Set 2 
(effect of Ca2+ concentration) 16 15 

Set 3 
(effect of polyethyleneimine concentration) 11 10 

Set 4 
(effect of polyacrylic acid concentration) 11 10 

 
neurons in input layer is the same as the number of input 
parameters. The effective parameters on volume flux and 
rejection are transmembrane pressure and concentrations 
of Ca2+, Cl¯, Na+, polyethyleneimine, and polyacrylic 
acid. So the input layer has 6 neurons. The number of 
neurons in output layer is also determined by the case 
under consideration. The output parameters are: volume 
flux and rejections of Ca2+, Cl¯, and Na+. So the output 
layer has 4 neurons. One or more hidden layer must be 
added for completing the network. According to universal 
approximation theory, single hidden layer was chosen. 

In order to train the network and get suitable weights 
and biases for each set of data, the data is divided into 
two groups of training and testing. Table 1 shows the 
number of data used for training and testing for each case, 
separately. 

For checking and selecting the best cases, one must 
calculate and compare errors. There are several types of 
standard error calculations among which the following 
one is used: 

( )∑ −′= 2
kk yyE                                                          (3) 

Error is calculated and its minimum value provides 
the best weights and biases at the end of testing for each 
output. 

The most important part of an ANN is the proper 
selection of transfer function. Logarithmic sigmoid 
function known as “ logsig” for hidden layer and simple 
linear function known as ”purelin” for output layer were 
determined as the best choices by trial and error. The 
general form of logarithmic sigmoid function is given as 
follow: 

xe1
1)x(f
−+

=                                                                (4) 

And general form of linear function is: 

x)x(f =                                                                          (5) 

Incidentally, 8 neurons for hidden layer are proper to 
minimize the error[37]. 
 
RESULTS  AND  DISCUSSION 

There are the four sets of experimental data to study 
the effect of pressure drop and concentrations of Ca2+, 
polyethyleneimine, and polyacrylic acid on the volume 
flux and rejection of solutes in water softening by 
nanofiltration process. 

Results of ANN model presented in this paper are 
compared with the experimental data. In the following 
sections some of these results are presented. More details 
can be found in [37]. 

Incidentally, the mean difference between the 
predicted results by model and experimental data divided 
by experimental data, is called normalized bias, is used 
for comparison of predicted results and experimental data 
in addition to error. 
 
Effect of pressure drop 

Pressure drop (the driving force for nanofiltration 
process) has a great effect on the volume flux and 
rejection of solutes. So the first set is about the variations 
of pressure drop while the other input parameters are 
constant and have the following values: 
[Ca2+] = 150ppm, [Na+] = 100ppm, [Cl¯] = 420.6ppm, 
[polyetecrolytes]=0 

Figs. 3 and 4 represent the effect of pressure drop on 
the volume flux and rejection of Ca2+,Cl¯, and Na+. The 
solid lines show the ANN results while the triangles are 
the experimental data. 

The volume flux is proportional to driving force and 
increases with increasing dp according to Fig. 3. The 
increase of the rejections in Fig. 4 issues from less 
increase of the flux of solutes than the flux of water with 
increasing dp. 

The values of normalized bias and error are represented 
in tables 2 and 3, respectively. The normalized bias 
values show that the model underpredicts slightly the 
volume flux and underpredicts very slightly the 
rejections. Also, the error values show that model has 
much little error.  
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Table 2: The normalized bias values. 
 

Sets Volume flux +2Ca
R  −Cl

R  +Na
R  

Set 1 -0.01122 -0.00066 -0.00075 -0.00104 

Set 2 -0.00065 -0.00317 -0.00344 -0.00411 

Set 3 -0.00036 0.000267 5.80E-05 -1.29E-05 

Set 4 -0.00166 0.000491 0.000551 0.00172 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: The ANN and experimental results for volume flux 
versus pressure drop. 
 
Effect of Ca2+ concentration 

The concentration of Ca2+ is changed in order to study 
effect of water hardness. The values of other parameters 
are: 

dp=10bar, [Na+]=100ppm, and [polyelectrolytes]=0 
Figs. 5 and 6 show the variations of volume flux and 

rejections versus variations of Ca2+ concentration. While 
Ca2+ concentration increases, osmotic pressure increases 
that results in decrease of effective driving force, so the 
volume flux and rejections will decrease. 

The normalized bias values are available in table 2. It 
shows that the model underpredicts very slightly the 
empirical data. Incidentally, the model predicts volume 
flux with very much little error and rejections with little 
error (see table 3). 
 
Effect of polyelectrolyte concentration 

Adding polyelectrolytes to input water is an important 
factor. To determine the role of this factor, the effect of 
two different types of polyelectrolyte is investigated. Pre-
sence of polyelectrolytes results in their adsorption on the 

Table 3: Error values. 
 

Sets Volume flux +2Ca
R  −Cl

R  +Na
R  

Set 1 0.0727 0.0414 0.0433 0.0489 

Set 2 0.0044 1.0737 1.0323 0.7985 

Set 3 0.0003 0.0106 0.0008 0.0038 

Set 4 0.0054 0.1177 0.0267 0.1955 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: The ANN and experimental results for the rejection of 
solutes versus pressure drop. 

 
inner surface of membrane pores and also adsorption of 
ions by polyelectrolytes. Thus, as illustrated in Figs. 7-10, 
the volume flux is decreased and rejections are increased. 
 
Polyethyleneimine 

In the third set, the concentration of poly-
ethyleneimine is changed and the values of other 
parameters are as below: 

[Ca2+] = 131ppm, [Na+] = 100ppm, [Cl¯] = 387ppm, 
dp=10bar, [polyacrylic acid]=0 

Figs. 7 and 8 illustrate the effect of this parameter. At 
higher  concentrations  the  adsorption   of   polyethylene- 
imine on the surface of membrane pores is decreased and 
the formation of complex between the polyelectrolyte and 
ions controls the volume flux and rejections. 

Tables 2 and 3 represent the normalized bias and error 
values. The model underpredicts very slightly the volume 
flux and overpredicts very slightly the rejection of Ca2+ 
and Cl¯ while underpredicts very slightly the rejection of 
Na+. Also error values show that the model has very 
much little error. 
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Fig. 5: The ANN and experimental results for volume flux 
versus Ca2+ concentration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: The ANN and experimental results for the rejection of 
solutes versus Ca2+ concentration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: The ANN and experimental results for volume flux 
versus polyethyleneimine concentration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8: The ANN and experimental results for the rejection of 
solutes versus polyethyleneimine concentration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: The ANN and experimental results for volume flux 
versus polyacrylic acid concetration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10: The ANN and experimental results for the rejection 
of solutes versus polyacrylic acid concentration. 
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Polyacrylic acid 
Finally, the effect of polyacrylic acid concentration  is 

investigated. It must be noted that the other parameters 
are constant and their values are as below: 

[Ca2+]=150ppm, [Na+]=100ppm, [Cl¯]=420.6ppm, 
dp=10bar, [polyethelenetmin e]=0 

Figs 9 and 10 represent the results. The model 
predicts the empirical data with acceptable accuracy. The 
normalized bias values show that the model underpredicts 
very slightly volume flux and overpredicts very slightly 
rejections (see table 2). It has very much little error for 
volume flux and rejection of Cl¯and little error for 
rejections of Ca2+ and Na+ (see table 3). 

 
CONCLUSIONS 

The values of normalized bias and error which is 
obtained by the model indicate that ANN model can be 
one of the best methods in modeling water softening 
using nanofiltration. According to the present paper, the 
feed-forward multi-layer perceptron ANN with 8 neurons 
must be used to determine the volume flux and rejection 
of solutes in presence of polyelectrolytes. Logarithmic 
sigmoid and simple linear transfer functions are obtained 
as the best choices for the hidden and output layers 
respectively. 

The maximum and minimum errors that are obtained 
from the model are 1.0737 and 0.0003 respectively. The 
modeling results show that very slightly, the model in 
sets 1 and 2 underpredicts the experimental data, while in 
sets 3 and 4 underpredicts the volume flux and over-
predicts major of the rejections. As a result, the overall 
agreement for each set was very good and the model has 
effective usage to predict the volume flux and rejections 
in water softening using nanofiltration process. 

 
List of symbols 
a                                                            Output of a neuron 
b                                                                                   Bias 
dp                                                          Pressure drop (bar) 
E                                                                                  Error 
f                                                               Transfer function 
m                                               Number of input elements 
n                                                                           Net input 
p                                                                       Input vector 
R                                                                          Rejection 

y                                                          Experimental output  
y'                                                            Output of network 
w                                                                Network weight 
 
Subscripts 
i                                                                                   Input 
k                                                                               Output 
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