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ABSTRACT: This study concerns the scope to improve water flooding in heterogeneous 
reservoirs. We used an existing, in-house developed, optimization program consisting of a reservoir 
simulator in combination with an adjoint-based optimal control algorithm. In particular we aimed 
to examine the scope for optimization in a two-dimensional horizontal reservoir containing a single 
high permeable streak, as a function of reservoir and fluid parameters, which we combined in the 
form of 10 dimensionless parameters. We defined the parameter NPVimprovement to indicate the 
improvement in net present value (NPV) that can be achieved through optimization. For initial 
screening of the effect of the dimensionless parameters, a two-level D-optimal design of experiments 
(DOE) technique was used to obtain a linear response surface model with the aid of 11 water-
flooding simulations. As a result 8 dimensionless groups were selected for more detailed analysis, 
and a full quadratic NPVimprovement model was constructed using a three-level D-optimal design 
using 50 simulations. It should be reminded that all the D-optimal matrix designs were generated by 
using commands of statistics Toolbox of MATLAB software. Finally, Pareto charts were plotted to 
visualize the sensitivity of the model as a function of the dimensionless parameters. Based on the 
present model we can draw the conclusion that the parameters LLs / (relative streak length), 

streakkk maxmax /  (relative streak permeability) and the ratio of water cost and oil price have the 

largest effect on the scope for obtaining a high value of NPVimprovement. 
 
 
KEY WORDS: Water flooding optimization, Dynamic optimization, Design of experiments, 
Multiple linear regression, Response surface model, NPVimprovement. 
 
 

INTRODUCTION 
In the oilfield, like the real world, intelligence is not 

always a guarantee for success, and the key parameter in 
the development of smart well technology is when the 
added functionality also adds value. Therefore, efficiency  
 
 
 

of different scenarios of smart well technology should be 
examined before any practical implementation. Water 
flooding optimization using dynamic optimization is one 
of these smart well scenarios, which aims to maximize  
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Fig. 1: Layout of the project. 
 
recovery or net present value over a given time period for 
heterogonous reservoirs that suffer from high permeable 
streaks. As a matter of fact, the high permeable streaks 
often cause early breakthrough; hence injected water 
escapes through the high permeable streaks and oil 
sweeping remains immature. However, dynamic flow 
control generally helps to solve this problem considerably 
[1,3-5] . An average improvement of 23.7 % was seen in 
the 50 simulation runs.  It was known that the scope for 
optimization by dynamic flow control depends on 
reservoir properties such as length and width of the high 
permeable streaks [2]. Therefore, we aimed to examine 
the sensitivity of this scope for improvement with respect 
to various reservoir properties by constructing a response 
surface model. This report documents the efforts aimed to 
achieve the goal of the project. 
 
LAYOUT  OF  THE  RESEARCH 

The complete layout of the project has been described 
schematically in Fig. 1. According to table 1, we started 
with selection of initial parameters. Then we changed 
input variables to dimensionless parameters to reduce 
their number and eliminate their dimensions (table 2). In 
other words, all the input variables were converted to 
dimensionless parameters by construction of the 

dimensionless ratios. We aimed to examine the sensitivity 
of output function of the optimizer (NPV) in terms  
of the reservoir and fluid properties by constructing a 
response surface model. Therefore, the response function 
(NPVimprovement) was defined on the basis of NPV function 
and dimensionless variables were considered as inputs of 
the response surface model. D-optimal technique was 
used to design the screening simulation runs. After 
running the simulations, multiple linear regression was 
considered to fit a linear model so that we could screen 
the major effects of dimensionless parameters on 
response function. Pareto charts were constructed to 
visualize the result of linear screening. After eliminating 
two initial dimensionless parameters (µo/µw, pres/pref) with 
small effects on response function, final simulation runs 
were designed by using of three-level D-optimal 
technique. By running the simulations and recording the 
NPVimprovement for all the runs, full-quadratic response 
surface model was constructed by using multiple linear 
regression. Pareto charts were plotted in order to depict 
the effects of linear interaction and squared terms of the 
response surface model. The next step was independent 
testing and error analysis of the model. It was done in 
order to examine the efficiency of the constructed 
response surface model. 
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Table 1: Initial input parameters. 
 

Initial variable Description 

kxstreak Streak permeability in x-direction 

kystreak Streak permeability in y-direction 

kxmatrix Matrix permeability in y-direction 

kymatrix Matrix permeability in y-direction 

µo Oil viscosity 

µw Water viscosity 

pr Reservoir pressure 

qinj Water injection rate 

Ls Length of streak 

L Length of reservoir 

Ws Width of streak 

W Width of reservoir 

Water cost Water production cost 

Oil price Oil price 

ϕ Porosity 

 
Table 2:  Initial dimensionless parameters. 

 
Dimensionless group Description 

ϕ Porosity 

kmax/kmaxstreak 
Maximum permeability of matrix over 

maximum permeability of streak 

Astreak Anisotropy of streak 

Amatrix Anisotropy of matrix 

µo/µw Oil viscosity over water viscosity 

Ws/W Width of streak over width of reservoir 

Ls/L Length of streak over length of reservoir 

pres/pref 
Reservoir pressure over reference 

pressure 

Qinj/qref 
Water injection rate over reference water 

injection rate 

(Water cost/Oil price) Water produced cost over oil price 

CHARACTERISTICS  OF  THE  OPTIMIZER 
Reservoir model description 

Water flooding optimizer assumes a heterogeneous, 
horizontal, two dimensional, two-phase (oil-water) 
reservoir with two horizontal smart wells, an injector and 
a producer, at opposite sides. The reservoir has no-flow 
boundaries at all sides. Each well is divided in segments 
with ICVs, allowing for individual inflow control of the 
segments [3]. Dimensions of the grid blocks are 30 m 
(length), 30m (width) and 10m (height). There are 30 grid 
blocks along the length and width of the reservoir. 
Therefore, the area of the reservoir is 900 m by 900 m. 
High permeable streaks can be defined in two-
dimensional reservoir model with different lengths, widths 
and angle. The streaks cause early water breakthrough, 
and water flooding optimizer aims to maximize recovery 
or net present value over a given simulation time for 
heterogonous reservoirs that suffer from these high 
permeable streaks. Fig. 2 and Fig. 3 describe the 
heterogeneous, horizontal, two-dimensional reservoir. 
Injection and production wells are located at opposite 
sides of the reservoir and high permeable streaks are 
perpendicular to the direction of injection and production 
wells. Reservoir model includes two different parts: 
streak and matrix. They both have the same porosity, but 
different permeability in x and y-direction. Streaks with 
different lengths and widths can be defined for optimizer 
in order to monitor the effect of change of them on output 
function of the optimizer. 

 
Methodology of the water flooding optimizer 

- Water flooding optimizer has been developed on the 
basis of optimal control algorithm. Optimal control is a 
gradient-based optimization technique that is used to find 
the input variables that minimize or maximize a certain 
objective function. But maximizing or minimizing of the 
objective function is under limitation of different 
constraints of the system. Dynamic optimization involves 
the constraints of the system by using of Lagrange 
Multipliers [3]. Water flooding optimizer has considered 
two different options for reservoir constraints: 

- Pressure constraint 
- Rate constraint 
We run all the designed simulations under the 

assumption of rate constraint.   
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Fig. 2: Visualization of the dimensions of reservoir and a 
selective high permeable streak. (Color bar shows the 
difference of permeability of matrix and high permeable 
streak). 
 
DEFINING INPUT PARAMETERS AND OUTPUT 
RESPONSE FUNCTION 
Initial input parameters 

Table 1 introduces different input variables of the 
optimizer. Two-dimensional reservoir model assumes 
four different permeabilities (matrix permeability along x 
and y-direction, streak permeability along x and y-
direction). Oil and water viscosity were the next input 
variables. Geometric dimensions of the high permeable 
streak and reservoir (i.e. length and width of the reservoir 
and streak) were the other input variables. Reservoir 
pressure, water injection rate, water production cost, oil 
price and reservoir porosity were the last selections for 
initial input parameters. Of course, there were some other 
variables such as capillary pressure (Pc), oil and water 
compressibility (co , cw), and angle of streak, but their 
small effects had already been confirmed by early 
simulation runs. 

 
Output response function 

NPV has been considered as objective function, 
which tends to be maximized by optimal control 
algorithm [3]. The objective function is equal to the NPV: 

∑
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Fig. 3: Top view of reservoir showing two-dimensional 
permeability of matrix and streak. 
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The assumption is that the grid block volume  ∆x∆yh 
and the cost/benefit coefficients rw, and ro are the same 
for all well segments. The terms in the denominators of 
the sum terms introduce discounting. ς is the net present 
value function over a given time, b the annual interest 
rate which is expressed in %, tn the time expressed in 
whole years at time step n,qw produced water flow rate 
and qo produced oil flow rate. Note that qo and qw have 
negative sign and t is an exponent, where n is a 
superscript [3]. 

Generally, high permeable streaks cause early water 
breakthrough and water-flooding optimizer has been 
designed to maximize recovery in heterogeneous 
reservoirs. The optimizer improves the water flooding 
policy from different segments with iteration process. 
First of all, the optimizer performs water flooding 
without the use of optimizer algorithm (i.e. conventional 
water flooding). After that, the water injection policy 
proceeds on the basis of optimal control algorithm in 
order to maximize the net present of the water-flooding 
scenario. 

Therefore, optimizer calculates net present value of 
the water flooding scenarios with and without using 
optimization algorithm. They were named as NPVoptimized 

and NPVconventional, respectively. We defined NPVimprovement  
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as response function in order to monitor the efficiency of 
the optimizer algorithm in different reservoir conditions: 

alconvention

alconventionoptimized
timprovemen NPV

NPVNPV
NPV

−
=                  (3) 

where NPVconventional is net present value without the use 
of water flooding optimizer, NPVoptimized net present value 
by means of optimizer algorithm and NPVimprovement the 
fraction of net present value improvement. 
 
Constant cumulative water injection 

We considered one pore volume injection for all the 
simulation runs. In this case, we were sure that all the 
simulation runs reach to the breakthrough time and the 
reservoir is not depleted completely. We calculated 
simulation time for different runs by using the following 
formula: 

Simulation time= (pore volume) /( injection  rate)        (4) 
 
Design of experiments (DOEs) 

Sometimes we want to know the sensitivity of output 
function of a system whit respect to the different input 
parameters. The system can be experimental set-up or 
simulation software. Therefore, we deliberately change 
one or more input parameters to observe the effects of the 
imposed perturbation on output function. One by one 
changing of the parameters is the traditional way of 
perturbing the input parameters. In this case, we have to 
change the input variables one by one and run the 
simulation or experimental set-up for all the parameter 
changes. This is not an efficient way, because it cannot 
consider the simultaneous effects of changes of different 
parameters and it is also very time- consuming. The 
statistical design of experiments (DOE) is a amuch more 
improved procedure for planning experiments so that  
data can be analyzed to give valid conclusions. DOE 
introduces different techniques in order to monitor the 
simultaneous changes of input parameters in a systematic 
way [6]. The technique is applied to choose a moderate  
number of simulation runs and analyze them to estimate 
the sensitivity of output function to various input 
parameters. In other words, well-chosen experimental 
designs can maximize the amount of information that can 
be obtained for a given amount of experimental design 
[6]. 

In order to construct a certain DOE design for 
simulator or experimental set-up, there was a need to 
define levels of extremes for each input variable. Two-
level (i.e. minimum and maximum) and three-level (i.e. 
minimum, intermediate, and maximum) designs are the 
most prevalent ones. Two-level designs cannot be used to 
predict the curvature shape of response surfaces. They 
only can construct linear response surfaces, whereas 
three-level designs can be used in order to construct 
nonlinear response surface models. 

In linear screening of the initial dimensionless 
parameters, we defined two levels of extremes for each 
dimensionless parameter and we reached to the third 
intermediate level by averaging of maximum and 
minimum levels. Therefore, the three levels were used for 
construction of three-level D-optimal design. For 
example, porosity of the reservoir was one of the input 
dimensionless parameters. We considered 0.1 and 0.3 for 
minimum and maximum levels, respectively. They were 
used for linear screening. After screening out the 
dimensionless parameters, porosity was still one of the 
final dimensionless parameters. We need to have three 
levels for each final dimensionless parameter. Therefore, 
we obtained 0.2 for intermediate level of reservoir 
porosity by averaging of 0.1 and 0.3. Then the three 
levels were used for creating non-linear response surface 
model. Two levels of extremes were defined to make 
linear model and three levels of extremes were 
considered to create the nonlinear response surface 
model. Note that notations –1, 0, +1 describe minimum, 
intermediate and maximum levels of parameters, 
respectively. In general, designs are lists of combination 
of factors at which experiments or simulations are 
performed. In matrix notation, each row of the design 
matrix indicates a run, whereas each column contains the 
settings of each factor [6]. Table 3 and table 4 show the 
extreme levels of dimensionless parameters used for 
constructing the linear and nonlinear response surface 
models. 

Full factorial designs are the simplest forms of DOE 
designs and the number of simulation runs for full 
factorial designs can be calculated by the following 
formula: 

Number of full factorial runs= Lk                                  (5) 

where  L  is  the  number  of levels  of  factors  and  k  the  
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Table 3: Initial dimensionless parameters and their two-level 
extremes for linear screening. 

 

Dimensionless parameter Low extreme High extreme 

φ 0.10 0.30 

kmax/kmax streak 0.01 0.10 

Astreak 0.01 1.00 

Amatrix 0.01 1.00 

µo /µw 0.10 10.00 

Ws / W 0.03 0.33 

Ls / L 0.80 1.00 

Pres / pref 0.75 1.00 

qinj / qref 0.60 1.00 

(Water cost)/(Oil price) 0.05 0.20 

 
Table 4: Levels of extremes for 3-level D-optimal design. 
Dimensionless 

parameter 
Low 

extreme 
Intermediate 

level 
High 

extreme 
φ 0.1 0.2 0.3 

kmax/kmaxtreak 0.01 0.055 0.1 

Astreak 0.01 0.505 1 

Amatrix 0.01 0.505 1 

Ws/W 0.06 0.18 0.3 

Ls/L 0.8 0.9 1 

Qinj/qref 0.6 0.8 1 

(Water cost) / 
(Oil price) 0.05 0.125 0.2 

 
number of input parameters. The story of DOE design 
begins from full factorial design. Needless to say, full 
factorial designs include all the possible settings and are 
the most complete designs. But if we have much more 
input variables with three or more levels of extremes, the 
number of simulation runs will increase dramatically. 
Therefore, different techniques of DOE were invented in 
order to have moderate number of simulation runs with 
high amount of data information. Different techniques of 
DOE can be divided into two main groups: 

- Classical experimental designs 
- Optimal experimental design 
The main difference between classical and optimal 

experimental designs is that classical designs are the ones 
created before the generation of computers, but optimal 
designs were developed after invention of computers. 
Therefore, classical designs are famous to first-generation 
of DOE designs and optimal experimental designs are 
called second-generation of DOE designs [7]. 
 
Optimal experimental design 

Optimal experimental designs are called second-
generation of DOE designs since they were developed 
after generation of computers. They are all based on 
mathematical optimality criterion. Hence, using of 
computer is inevitable for constructing optimal experi-
mental designs. D-optimal DOE designs are the most 
important types of optimal experimental designs. 
 
D-optimal design 

The main idea of the D-optimal DOE design can be 
described by the following formula: 

(Information) /(Simulation runs) = maximum.              (6) 

In other words, D-optimal design helps to design 
simulation runs with the maximum amount of 
information and minimum number of simulation runs.  
D-optimal design is based on the following optimality 
criterion: Two column vectors X1 and X2 are orthogonal 
if X1

*X2=0 .The more dependent the vectors (columns) of 
the design matrix, the closer to zero is the determinant of 
the correlation matrix for those vectors; the more 
independent the columns, the larger is the determinant of 
that matrix. Therefore, finding a design matrix that 
maximized the determinant D of the design matrix means 
finding a design where the factor effects are maximally 
independent of each other. This criterion for selecting a 
design is called D-optimality criterion [8]. 

We used two-level D-optimal design for constructing 
of linear matrix design. We generated 11 simulations runs 
for 10 initial dimensionless parameters. After that, three-
level D-optimal design was used in order to create 50 
simulation runs for eight dimensionless parameter. All 
the D-optimal matrix designs were generated by using of 
commands of statistics Toolbox of MATLAB software. 
Shape    of   the   model   (i.e.   linear,   interaction- linear,  
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Fig. 4: DOE process for constructing of response surface models. 
 
quadratic), number of desired runs and number of 
parameters were three essential input terms for 
construction of D-optimal matrix designs [9]. 

We used D-optimal designs for linear and non-linear 
modeling because they have been constructed on the 
basis of optimality criterion. Namely, they have 
maximum amount of information with minimum amounts 
of simulation runs. Therefore, they are always good 
candidates for making matrix designs. But the point is 
that D-optimal designs are created under the assumption 
of shape of response surface function. Therefore, D-
optimal designs are always biased on the assumed shape 
of response surface model. 

The complete procedure for construction of response 
surface models using design of experiments method has 
been described in Fig. 4. 
 
RESPONSE  SURFACE  MODELS 

Generally, the true relation between the different 
parameters of a system is really unknown. Therefore, 
finding an approximate solution as an empirical equation 
is a good way to predict the effect of input independent 
parameters on output dependent function. Response 
surface models are functions that are empirically fit to the 
observed data from results of experiments or simulation 
runs. They consider a polynomial empirical equation to 
predict the local shape of the response surface. That’s 
why they are named response surface models. Polynomial 
response surface models are most widely used so that we 
can find optimum or improved process settings [10]. 

Linear  and quadratic response surface models are two  

important kinds of polynomial response surface models. 
Besides, interaction terms can be added to empirical 
structure of response surface models. Therefore, there are 
different options in order to design the model equation. 
They are as follows: 

- Constant term  
- Linear term  
- Interaction term 
- Quadratic term 
For instance, if we consider a system with two input 

variables (x1,x2), full quadratic response surface model 
can be described by the following formula [11]: 

2
222

2
11121122110 xxxxxx β+β+β+β+β+β=η            (7) 

As we see in the above formula, full quadratic 
response surface model, includes constant term (β0), 
linear terms (β1x1+β2x2), interaction terms (β12x1x2) and 

quadratic terms ( 2
222

2
111 xx β+β ), where β0, β1, β2, β12, 

β11, β12 are correspondent coefficients of different terms 
of the equation and η is the model function. It is possible 

to construct the model function with different structures 
by the use of a combination of constant term, linear 
term(s), interaction term(s) and quadratic term(s) [12]. 
The following formulas describe some other options of 
response surface model with two input parameters  
(x1 , x2): 

Simple linear model:  

η=β0+β1x1+β2x2                                                              (8) 

Linear-interaction model:  

 
Fit the model by multiple 

linear regression 
 

Substitute minimum, 
intermediate and maximum 

levels of each factor in place of 
–1,0,+1 respectively in a fixed 

column 

 
Put each row in simulator, 

run the simulator and obtain 
the actual output function 

 
Construct matrix design by 
DOE techniques such as D-

optimal, fractional factorial etc 
 

 
Define the number of factors, 

number of levels for each factor 
and the levels of extremes 
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21122211o xxxx β+β+β+β=η                                    (9) 

The notations used for the above formulas are the 
same as full quadratic response surface equation. 
Response surface models can be used as a proxy model 
for reservoir simulators in order to perform uncertainty 
analysis, parameters estimation and optimization. 
 
Fitting the experimental design by multiple linear 
regression 

We used multiple linear regression in order to fit the 
linear and non-linear response surface models. Multiple 
linear regression is a statistical technique that allows us to 
predict one dependent variable with respect to several 
independent variables [13]. 

Multiple linear regression is multidimensional linear 
regression on the basis of Least square method. Least 
square method assumes that the best curve-fit of data is 
the curve that has the minimal sum of the deviations 
squared (least square error) from a given series of data. 
Suppose that the data points are: 

)y,x,...,y,x(),y,x( nn2211                                          (10) 

Where x is independent variable and y is the 
dependent variable. The fitting curve f(x) has the 
deviation (error) d from each data point. According to the 
method of least squares, the best fitting curve should 
satisfy the following formula: 

[ ] Minimum)x(fyd
n

1i

2
ii

n

1i

2
i =−=∑∑

==

                          (11) 

Generally, the purpose of multiple linear regression is 
to find a relationship between a group of input parameters 
(the columns of x) and a response, y. This relationship is 
useful for understanding which parameters have the 
greatest effect, knowing the direction of the effect (i.e., 
increasing x increases/decreases y) and using the model 
to predict future values of the response when only the 
predictors are currently known [13]. The linear model can 
be described by the following formula: 

ε+β= Xy                                                                    (12) 

where y is an n-by-1 vector of observations, X an n-by-p 
matrix of repressors, β a p-by-1 vector of parameters and 
ε an n-by-1 vector of random disturbances. The solution 
to the problem is a vector, b, which estimates the 

unknown vector of parameters, β. The least squares 
solution is: 

yXX)(Xβ̂b T1T −==                                                     (11) 

Generally, the purpose of multiple linear regression is 
to find a relationship between a group of input parameters 
(the columns of x) and a response, y. This relationship is 
useful for understanding which parameters have the 
greatest effect, knowing the direction of the effect (i.e., 
increasing x increases/decreases y) and using the model 
to predict future values of the response when only the 
predictors are currently known [13]. The linear model can 
be described by the following formula: 

ε+β= Xy                                                                    (12) 

where y is an n-by-1 vector of observations, X an n-by-p 
matrix of repressors, β a p-by-1 vector of parameters and 
ε an n-by-1 vector of random disturbances. The solution 
to the problem is a vector, b, which estimates the 
unknown vector of parameters, β. The least squares 
solution is: 

yX)XX(ˆb T1T −=β=                                                  (13) 

We used multiple linear regression in order to solve 
the combination of simulation design equation. All the 
linear and nonlinear models were fitted by using of 
commands of Statistics Toolbox of MATLAB software. 
 
Linear screening of the parameters 

The primary purpose of the linear screening is to 
select or screen out the few important main effects from 
the many less important effects. Linear screening designs 
are also named main effects designs. The methodology of 
linear screening applies solving a linear program with the 
regression function, estimated through linear regression 
analysis, as the objective function. Linear screening 
assumes that input parameters are completely inde-
pendent of each other. Therefore, it is not a real response 
surface model. It is usually done to screen the major 
effects of the initial input parameters. According to the 
results of linear screening, unnecessary initial parameters 
with the least degrees of effects will be eliminated. 
Therefore, final nonlinear response surface model is 
constructed on the basis of the most important input 
parameters.   We   selected   10   different   dimensionless  
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Fig. 5: Pareto chart showing linear model coefficients. 
 
 
groups and considered a simple linear model for linear 
screening: 

∑
=

β+β=
10

1i
ii0timprovemen xVP̂N                                     (14) 

where xi and βi represent the dimensionless groups and 
their correspondent coefficients, respectively. We 
considered two extremes for each dimensionless group 
and substituted them in a two-level D-optimal design and 
considered a simple linear model (for 10 initial 
dimensionless parameters) in order to fit 11 simulation 
runs of screening part by multiple linear regression. 
Finally we derived the linear model coefficients by using 
multiple linear regression technique. Pareto graphs were 
constructed to visualize the results of screening part .See 
Fig. 5 and Fig. 6.  

It should be reminded that Pareto Chart is a special 
form of a bar graph and is widely used to display the 
relative importance of problems or conditions. Pareto 
charts graphically order the effects of factors with respect 
to the response function so that the most important effects 
(main effects) can come to the surface. In general, a 
Pareto chart is used for focusing on critical issues by 
ordering them in terms of importance and frequency, 
prioritizing problems and analyzing problems by different 
groupings of data. 
 
Construction of response surface model 

Generally, the structure of the relationship between 
the response and the independent  variables  is  unknown.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Pareto chart showing normalized effects of 
dimensionless groups in linear model. 
 
The most important step in the construction of response 
surface model is to find a suitable approximation to the 
real relationship. The most common forms of response 
surface models are low-order polynomials (first or 
second-order). First-order models are widely used for 
screening of the initial input parameters and second-order 
response surface models are the most common forms of 
nonlinear response surface models. They are also famous 
to the full-quadratic response surface models. They 
include linear, square and interaction terms. The second-
order model, in general form, is given as: 

∑∑∑ β+β+β=η jiij
2
jjj0 xxx                               (15) 

where η is full-quadratic response surface model, βo the 

constant term, ∑β jjx  linear terms, ∑β 2
jjjx  square 

terms and ∑∑β jiij xx  interaction terms. Note that   

β0, βj, βjj and βij are correspondent coefficients of 
different terms. 

The major effects of initial dimensionless parameters 
had already been monitored by linear screening. 
Referring to the linear screening results, we eliminated 
two dimensionless parameters (µo/µw, pres/pref) with small 
effects on output response function and selected eight 
final dimensionless parameters. We constructed a full-
quadratic response surface model with eight dimen-
sionless parameters. A full-quadratic response surface 
model with eight  variables  includes  one  constant  term,  
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eight linear terms (main effects of each input parameter), 
eight square terms (square terms of each input parameter) 
and 28 interaction terms (all the bilateral effects of the 
input parameters). Totally constructed full-quadratic 
response surface model included 45 terms. 

We designed 50 simulation runs by using three-level 
D-optimal technique of DOEs for eight parameters. 
Afterrunning the simulations and calculating 
NPVimprovement for all the runs, we obtained the 50 by 1 
solution matrix (y). Then we completed 50 by 45 
information matrix (X) by multiplying and squaring the 
correspondent pre-designed main effects. Using multiple 
linear regression, we obtained 45 by 1 coefficient matrix 
(β) of full-quadratic response surface model. Finally 
Pareto charts were constructed in order to visualize the 
effects of 45 terms of full-quadratic response surface 
model. See Fig. 7. 

 
Independent testing of response surface model by 
perturbation of DOE design 

Response surface models are always biased to the 
levels of designs. Namely, they are constructed by the 
extremes of the input parameters. On the other hand, the 
structure of the relationship between the response 
function and input parameters is unknown and 
construction of response surface models is done on the 
basis of finding a suitable approximation to the actual 
relationship. Hence, response models are always biased 
on levels of the input parameters and the pre-assumed 
structure of the model. Therefore, we perturbated the 
DOE design by generating ten new simulation designs to 
see the efficiency of the model for predicting the 
simulation runs. The perturbing design was generated by 
defining new extremes on the basis of linear model 
assumption. It was done in order to impose changes to the 
main DOE design to see the effects of the perturbation on 
output function of the model. We defined the perturbing 
runs by two-level D-optimal DOE technique and 
calculated actual NPVimprovement for each run. On the other 
hand, we calculated NPVimprovement by using of the non-
linear surface response model. Comparison of the actual 
and calculated NPV was done in order to examine the 
efficiency of the constructed response surface model in 
predicting the output response function, Fig. 8 depicts the 
ability of the model for predicting the recovery 
improvement scenarios. Error analysis was done in  order  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Pareto chart showing the normalized effects of 
nonlinear response surface model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8: Scattered plot showing five points of independent 
testing. 
 
to examine the efficiency of the proposed response 
surface model.  Table 5 and table 6 show the results of 
error analysis in detail. 
 
RESULTS  AND  DISCUSSION 
Linear screening 

Linear screening always is done to detect the input 
parameters with the major degrees of importance.  

0.00       0.01       0.02      0.03       0.04       0.05      0.06 
NPV actual 

0.10 
 

0.09 
 

0.08 
 

0.07 
 

0.06 
 

0.05 
 

0.04 
 

0.03 
 

0.02 
 

0.01 
 

0.00 

N
PV

 m
od

el
 

G 
 

Cl 
 

I2 
 

G2 
 

CG 
 

BI 
 

CF 
 

A 
 

CH 
 

B 
 

BC 
 

C2 
 

BG 
 

F2 
 

B2 

 

BH 
 

I 
 

BF 
 

FH 
 

F 
 

FG 
 

DI 
 

H 
 

EI 
 

GI 
 

EG 
 

D 
 

DG 
 

E 
 

H2 
 

BD 
 

GH 
 

CD 
 

C 
 

DH 
 

EH 
 

EF 
 

DF 
 

HI 
 

CE 
 

D2 
 

DE 
 

E2 
 

FI 
 

BE 
 

0.00     2.00     4.00     6.00     8.00   10.00   12.00   14.00 
Percentage effect 

11.99 % 
8.92 % 

8.74 % 
7.16 % 

6.81 % 
6.65 % 

6.16 % 
5.97 % 

5.41 % 
2.84 % 

2.71 % 
2.31 % 

2.10 % 
2.10 % 

1.69 % 
1.45 % 

1.35 % 
1.39 % 

1.34 % 
1.25 % 
1.19 % 

1.15 % 
1.10 % 
1.05 % 

0.66 % 
0.65 % 
0.64 % 

0.55 % 
0.52 % 
0.51 % 
0.50 % 
0.47 % 
0.45 % 
0.45 % 

0.36 
0.29 % 

0.22 % 
0.20 % 
0.18 % 
0.15 % 
0.11 % 
0.09 % 
0.07 % 

0.06 % 
0.045 % 

A Constant term 

B Porosity 

C Kmax / Kmaxstreak 

D Astreak 

E A 

F Ws/W 

G Ls/L 

H qinjection/qref 

I Water cost ($)/Oil price($) 



Iran. J. Chem. Chem. Eng. Sensitivity Analysis of Water … Vol. 26, No.1, 2007 
 

103 

Table5: selective independent testing of the model. 
 

Runs NPV actual NPV model 

1 0.021 0.046 

2 0.0485 0.089 

3 0.0122 0.0157 

4 0.0027 0.0046 

5 0.0232 0.0339 

 
Table 6:  The results of error analysis. 

 

Mean absolute error 0.01632 

Mean NPV actual 0.02152 

Mean abs error/Mean NPV 
actual 0.75836 

 
Namely, linear screening is a rough estimate for 
monitoring the sensitivity of the output response function 
with respect to the different input parameters. It doesn’t 
cover interaction and second order terms.  

Therefore, linear model is not a real response surface 
model and is unable to pinpoint the effects of different 
parameters exactly. However, referring to the Pareto 
charts that show the screening results of initial 
dimensionless parameters (Fig. 5 and Fig. 6), kmax/kmax 
has the highest effect on output response function. On the 
other hand, µo/µw has the least importance and the effects 
of the other dimensionless parameters are between these 
to extreme effects. Geometric factors (Ws/W, Ls/L) with 
moderate effects are in the middle of the order of the 
Pareto chart. 
 
Full quadratic response surface model 

According to the non-linear response surface model 
(Fig. 7) main effect G (length of streak over length of 
reservoir) has the maximum effect on output response 
function. Square term G2 and interaction term CG also 
have high effects on response function. Therefore, it is 
safe to say that length of streak over length of reservoir 
has the highest effect on output function. Interaction term 
Cl and square term I2 are the second and third terms in 
Pareto chart ranking. As a result, financial dimensionless 
group I (water cost over oil price) is the second important 
dimensionless group. Referring to the position of 
interaction terms Cl, CG and CF, one can find out that 
C(kmax/kmaxstreak)) is the third important dimensionless 

parameter. The other terms have the lower degrees of 
effect. It can be concluded that interaction and square 
terms have important effects on response surface 
function. Therefore, they affect the ranking of the 
different terms and this is the main reason for the 
difference between the results of linear screening and 
non-linear surface response model.  

Length of streak and variation of matrix and high 
permeable streak permeability both intensify early water 
breakthrough. Surprisingly, the effect of porosity on 
NPVimprovement is quite considerable, whereas we expected 
that porosity couldn’t play an important role on 
NPVimprovement. However, the model should be improved 
(i.e. by increasing  simulation runs), in order to judge on 
the importance of the other terms at the bottom of the 
Pareto graph. 

 
Independent testing of the response surface model 

A number of 10 independent runs were designed in 
order to examine the fitting efficiency of the model. 
Table 6 shows the results of independent testing of the 
model. As we see, response surface model has predicted 
simulation runs with an acceptable amount of error.  
Fig. 8 depicts the scattered graph of independent testing 
results.  It shows that response surface model is 
successful to predict these simulation runs. 

It can be imagined that there is a parabolic trend 
between the number of simulation runs and fitting 
efficiency of the response surface model and that by 
increasing simulation runs, fitting efficiency of the model 
will increase dramatically, but after that, the slope will be 
smoothed gradually. However, increasing simulation runs 
is highly recommended to complete the response surface 
model as a fast proxy model. 
 
Recommendations 

- Increase the number of simulation runs to complete 
the response surface model. 

- Try other options for  alternative response surface 
models, i.e. cubic or logarithmic models. 
 
CONCLUSIONS 

1- The scope to improve water flooding in a two-
dimensional square reservoir produced with two rows of 
injection and production wells and containing a single 
heterogeneous streak can be described with the aid of 10 
dimensionless parameters.  
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2- Initial screening using a linear response model 
based on 11 water-flooding simulations indicated that 
only 8 dimensionless parameters are statistically 
significant. 

3- More complicated response surface models can be 
easily obtained with the aid of design-of-experiments 
techniques. In particular, we developed a full quadratic 
response surface model based on 50 simulations.  

4- These simulation runs show an average scope of 
improvement of 23.7 %. 

5- An independent verification of the quality of the 
full quadratic response surface model, using another 10 
simulations, reveals that some  more simulations is 
needed to obtain a  more reliable response surface model. 

6- Based on the present model we  conclude that the 
parameters Ls/L (relative streak length), kmax/kmaxstreak  
(relative streak permeability) and the ratio of water cost 
and oil price have the largest effect on the scope to 
improve water flooding. The scope for improvement 
increases with larger relative streak length, larger 
permeability contrast, and relatively high water costs. 
 
Nomenclatures 
NPV                        Net present value 
NPVimprovement              Net present value improvement 
NPVconventional       Net present value without optimizer 
NPVoptimized            Net present value with optimizer 
n          Time step 
N               Final time step 
r      Price per unit volume ,($/m3) 
∆t           Time interval, (s) 
qo       Oil flow rate, (m3/s) 
qw               Water flow rate, (m3/s) 
b       Annual interest rate 
h                  Reservoir height, (m) 

kmaxstreak    Maximum permeability of streak, (m2) 

kmax                Maximum permeability of matrix, (m2) 
L              Length of reservoir, (m) 
Ls     Length of streak, (m) 
Ws               Width of reservoir, (m) 
W      Width of streak, (m) 
A          Matrix anisotropy 
Astreak           Streak anisotropy 
ϕ            Porosity 
µo       Oil viscosity, (Pa.s) 
µw                Water viscosity, (Pa.s) 

pres              Reservoir pressure, (Pa) 
pref             Reference pressure, (Pa) 
qinj      Injection rate, (m3/s) 
qref                Reference injection rate, (m3/s) 
kymatrix                Matrix permeability in y direction, (m2) 
kystreak                Streak permeability in y direction, (m2) 
kystreak                Streak permeability in y direction, (m2) 
kxmatrix                Matrix permeability in x direction, (m2) 
RSM             Response surface model 
co          Oil compressibility, (1/Pa) 
cw     Water compressibility, (1/Pa) 
pc              Capillary pressure, (Pa) 
ICV                Internal Control Valve 
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