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ABSTRACT: In general, the objective of distillation control is to maintain the desired products 

quality. In this paper, the performances of different one point control strategies for an aromatic 

distillation column have been compared through dynamic simulation. These methods are: a) 

Composition control using measured composition directly. This method sufferes from large 

sampling delay of measuring devices. b) Composition control by controlling the temperature of a 

specific tray. In this strategy, the composition-temperature relationship is used to find the 

temperature setpoint corresponding to the desired composition. Since composition-temperature 

relation depends on feed condition, an artificial neural network has been proposed which receives 

the feed specifications and provides the setpoint of the temperature control loop. c) Using 

temperature measurements for predicting the composition and controlling the composition based on 

predicted values of composition (inferential contol). Simulation results indicate that controlling the 

8th tray temperature and using an artificial neural network for calculating corresponding tray 

temperature setpoint, has the best performance. Due to negligible pressure drop along the column, 

controlling the tray temperature difference does not improve the control loop performance. 
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INTRODUCTION 

Distillation columns are the major part of most 

chemical processing plants. The purpose of a distillation 

column is to split the feed into two or more products with 

compositions different from the feed. The desired 

composition of the products may be fixed by products 

requirements or may be obtained from some plantwide 

optimization. An important objective of the control 

system is  to  keep  these  product  compositions  at   their 

desired levels. There are a lot of different methods for 

distillation  control.  Using  tray  temperature control loop 

 

 

 

for distillation control is one of the most popular 

strategies. Tray temperature control loops for distillation 

control have been used for many decades in industry. 

Theoretically, the best place to locate a temperature 

sensor  to  control the  overhead  distillation  composition 

would be the top tray for constant-pressure binary system. 

The tray temperature would reperesent the true distillate 

composition and the lag between the manipulated and 

controlled variables would be minimized. However the 

practical considerations of sensor sensitivity and variable 
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pressure, usually requires the temperature sensor to be 

moved down into the rectifying section. The ratio of the 

tray temeperature change to the distillate composition 

change (∆T/∆XD) decreases as the sensor is moved up 

the column. A point will be reached where the sensor can 

no longer detect small changes to control the distillate 

satisfactorily. On the other hand, the lower in the column 

the sensor is located the more steady state deviation in XD 

will be experienced. This occures because the manipulated 

variable change required to hold the control tray 

temperature constant will not, in general, be the correct 

change to hold the distillate composition constant. The 

selection of most appropriate location for temperature 

sensor is done according to the sensitivity of tray 

temperature to the changes in feed conditions and changes 

in manipulated variables. 

If changes occure in feed specifications (composition, 

flow rate and tempertaure), it is quite difficult to keep 

product composition at its setpoint by using tray 

temperature control loop because the tray temperature 

and overhead composition relation depends on feed 

specification. In addition, pressure changes also cause 

temperature variations. In order to cope with this 

problem, many approaches have been proposed. The 

influence of non-key components can be reduced by 

locating a temperature measurement in the region of the 

column where their compositions are nearly constant [1]. 

Yu and Luyben used the differential temperature for non-

key component compensation [2]. One of the temperature 

sensors is located on the most sensitive trays in the 

rectifying section and the other is located on the most 

insensitive trays in the column. Using this configuration 

for temperature sensors compensates tray temperature 

changes due to the changes of pressure through the 

distillation column. Whitehead and Parnis used a 

weighted average of several temperature difference for 

pressure disturbance compensation [3]. 

Another strategy for controlling the distillation 

product is direct control of composition. The limitation of 

this technique is the composition measurement lag. The 

accurate composition measuring devices like G.C. have 

considerable lags which deteriorates the performance of 

feedback loops. On the other hand, fast measuring 

devices do not have enough accuracy. 

Using measurements of product compsition with 

measurements of secondary process outputs, such as tray 

temperature, leads to the control strategy called 

inferential control. This control strategy was proposed by 

Brosillow et al., and discussed very briefly below [4]. 

An inferential control system uses measurements of 

secondary process output, such as temperature with high 

frequency sampling, to infer the effect of unmeasureable 

disturbances on primary process output, such as product 

quality with low frequency sampling. A linear estimator 

which minimizes an objective function is used to infer the 

ptoduct quality. An appropriate estimate of product 

quality can be obtained when the measurement of 

secondary output is available. This estimated values can 

be used for process control purposes. The proposed 

estimator is an static estimator and does not take into 

account the changes in operating conditions. Since then, a 

lot of studies and researches have been done to improve 

the performance of the estimator [5-10]. One of these 

schemes is the adaptive inferential estimator. In adaptive 

strategy the model parameters are updated when the 

process charactristics are changed. 

Recently the application of artificial neural network 

for estimating and controlling the quality of distillation 

column has received extensive attention [11-13]. Willis  

et al., discuss a neural network based estimation 

procedure for composition control of an industrial 

distillation tower using measured quantities such as 

overhead temperature [12]. 

In this article composition control of an aromatic 

distillation column is studied. Different approaches are 

considered and their performances are compared through 

simulation. The paper is organized as follows: First, an 

aromatic distillation column is modeled. Tray temperature 

measurement selection and design of composition 

estimator are studied next. Finally, the performances of 

different control strategies for setpoint tracking and load 

rejection are compared through simulaton studies. 

 

AROMATIC  DISTILLATION  COLUMN  MODELING 

In this part the static and dynamic behaviors of a 

multicomponent   distillation  column   are  studied.   The 

schematic diagram of the column is shown in Fig. 1. The 

column has 60 sieve trays and operates under total 

condensation and full reflux. Column diameter is 1.68 m 

and tray spacing is 0.6 m. The liquid holdups of the 

reflux drum and the reboiler are 7.5 m3 and 9.5 m3, 

espectively.  The  feed  stream  enters  the  column  at  the 
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Fig. 1: The schematic diagram of studied distillation column. 

 

33th tray. The specifications of different streams are 

given in table 1. Side product stream is taken from tray 5. 

The desired concentration of benzene in the side stream is 

99 %. 

 

STEADY  STATE  MODELING 

For steady-state modeling of the distillation column 

the following equations has been used: 

 
Material Balance 

)5,3,2,1j(DXXLyV Dijiji,1j1j =+=++                      (1) 

)2f,...,7,6j(WXDXXLyV wiDijiji,1j1j −=++=++  

wiDii,1f1fFiFff WXDXXLyVyV
i

++=+ −−  

)1N,...,1f,fj(BXXLyV Bijiji,1j1j −+=−=++  

wiBiDii WXBXDXFX ++=  

 

Enthalpy Balance 

)5,3,2,1j(;QDHhLHV CDjj1j1j =++=++          (2) 

)2f,...,7,6j(;WHQDHhLHV wCDjj1j1j −=+++=++  

wCD1f1fFFff WHQDHhLHVHV +++=+ −−  

)1N,...,1f,fj(;QBhhLHV RBjj1j1j −+=+−=++  

RCwDBF QQWHDHBhFH −+++=  

Equilibrium relationships 

)N,...,2,1j(;XKy jijiji ==                                 (3) 

)N,...,2,1j(;1y
C

1i

ji ==�
=

 

)N,...,2,1j(;1X
C

1i

ji ==�
=

 

It is assumed that liquid and vapor streams leaving 

each tray are ideal solutions so, as a result, the following 

equations have been used for calculating liquid and vapor 

enthalpy. 

 

Vapor enthalpy 

�=
=

C

1i
jijij yHH       (4) 

 

Liquid enthalpy 

�=
=

C

1i
jijij Xhh       (5) 

For calculating top product enthalpy, total condenser 

is assumed for column so the top product leaving the 

column at the bubble point condition: 

� � ===
= =

C

1i

C

1i
1i1i1Dii1D hXhXhH     (6) 

For reboiler also we have: 

� � ===
= =

C

1i

C

1i
NNiNiBiBiB hXhXhh    (7) 

For solving the above equations, the “� method of 

convergance” has been used. The static simulation results 

of the developed software and the corresponding 

industrial data are given in table 2. As can be seen, the 

results of the prepared software have an acceptable 

agreement with the industrial data. 

 

DYNAMIC  MODELING 

For dynamic modeling of the distillation column, the 

governing equations describing the system are given 

below: 

 

Component molar balances 

For column trays except feed and sidestream trays: 

W, XW 

F, ZF 

V 

Q

B, XB 

L 

1 

5 

8 

33 

60 

LC 

TC 

LC 
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Table 1: Studied distillation column characteristics. 

 

Table 2: Simulation results and industrial data. 

 Temp. 
(°C) 

Benzene 
(wt %) 

Toluene 
(wt %) 

Mxylene 
(wt %) 

Oxylene 
(wt %) 

Pxylene 
(wt %) 

E-benzene 
(wt %) 

Industrial side stream data 89 100 0 0 0 0 0 

Simulated sidestream 92.65 100 0 0 0 0 0 

Industrial bottom product data 142 0 51.69 20.57 10 9.39 8.24 

Simulated Bottom 146.9 0 51.62 20.66 10.25 9.47 8.34 

 

−−+= −−++ K,iK1K,i1K1K,i1K
K,i

xLyVxL
dt

dM
         (8) 

              N,.......,1K;Nc,....,1i;yV K,iK ==  

For feed tray: 

−++= −−++ f,if1f,i1f1f,i1f
f,i

ZFyVxL
dt

dM
                 (9) 

                f,iff,if yVxL −  

For sidestream tray: 

−−+= −−++ w,iw1w,i1w1w,i1w
w,i

ywyVxL
dt

dM
        (10) 

                w,iww,iw yVxL −  

 

Energy balances 

For column trays except feed and sidestream trays: 

−+= −−++ 1K1K1K1K
K HVhL

dt

dU
                             (11) 

              N,....,1K;HVhL KKKK =−  

For feed tray: 

−++= −−++ ff1f1f1f1f
f hFHVhL

dt

dU
                   (12) 

             ffKff HVhL −  

For sidestream tray: 

−+= −−++ 1w1w1w1w
w HV0hL

dt

dU
                         (13) 

             wwKwwww HVhLhw −−  

where for column trays [14]: 

trayKK
V
KK

L
KK VolP1.0HMhMU −+=                      (14) 

          N,...,1K =  

N,...,1k;Vol
MM

trayv
k

v
k

l
k

l
k ==

ρ
+

ρ
                     (15) 

 
Equilibrium relationships 

N,....,1K;NC,...,1i;xky k,ik,ik,i ===         (16) 

N,....,1K;N,...,1i;
P

P
k

k

sat
k,i

k,i ===             (17) 

�
=

==
NC

1i

k,i N,....,1K;1y                                         (18) 

�
=

==
NC

1i

k,i N,....,1K;1x  

Component molar hold-ups: 

K,i
V
KK,i

L
KK,i yMxMM +=                                       (19) 

N,...,1K;,.....,NC1i ==  

Stream 
 
              Spec. 

Temp. 
(°C) 

Benzene 
(wt %) 

Toluene 
(wt %) 

Mxylene 
(wt %) 

Oxylene 
(wt %) 

Pxylene 
(wt %) 

E-benzene 
(wt %) 

Feed 123 13.15 44.91 17.84 8.78 8.16 7.16 

Sidestream 89 99 1 0 0 0 0 

Bottom 142 0 51.69 20.57 1 9.39 8.24 
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For column reboiler 

Component molar balances: 

NC,...,1i;BXyVXL
dt

dM
R,iR,iR11

R,i
=−+=       (20) 

Energy balances 

RRRR11
R QBhHVhL

dt

dU
+−−=                          (21) 

 

For column condenser and reflux drum 

Component molar balances: 

NC,...,1i;XLyV
dt

dM
c,icN,iN

c,i
=−=                      (22) 

( ) NC,...,1i;XDRXL
dt

dM
d,ic,ic

d,i
=+−=            (23) 

Energy balances: 

cccNN
c QhLHV

dt

dU
−−=                                        (24) 

( ) l
d

l
cc

d hDRhL
dt

dU
+−=                                           (25) 

The liquid flow rate leaving each tray is given by the 

following correlation [15]: 

( )
�
�

�
�

�

�
�

�
�

�

=

×−ρ

≤

=

otherwiseN,...1k

60heightLevellength84.1

heightLevelif,0

L
5.1

weirkweir
1
k

weirk

k (26) 

where: 

N,...,1k;
A

M
Level

tray
l

k

l
k

k =
ρ

=                             (27) 

Using the above equations and Matlab software, the 

column has been simulated under dynamic conditions. 

Runge-Kutta Method has been used for solving algebraic 

differential equations.  

In this study one point control strategy has been 

considered. Sidestream flow rate is used as manipulated 

variable for product composition control. Liquid level in 

the reflux drum is controlled by reflux stream flow rate 

and the reboiler liquid level is controlled by manipulating 

the bottom product flowrate. Column reboiler heat duty is 

fixed. Digital PI controllers are used for all control loops. 

For liquid level low gain controllers are used in order to 

reduce the interaction between liquid level and 

composition control loops.For dynamic simulaton it has 

been assumed that secondary measurement, tray 

temperature, is available every 30 sec and side product 

composition is avaiable every 2.5 min. 

 
TRAY  TEMPERATURE  SELECTION 

Open loop testing uses the steady state model to 

identify the appropriate temperature sensor location for 

inferring product composition. This is accomplished by 

changing the manipulated variable (side stream flowrate) 

±5 % from the base case value and obtaining the steady 

state temperature profile along the column. The results 

are shown in Fig. 2. 

Fig. 3 shows tray temperature changes for three 

different steady state conditions when ±7 % and ±10 % 

changes are applied to feed temperature and flow rate, 

respectively. In Fig. 3 curve 1 is the base case condition, 

curve 2 corresponds to -7 % and -10 % changes in feed 

temperature and flow rate, respectively, and curve 3 is for 

+7 % and +10 % changes in feed temperature and flow 

rate, respectively. 

It can be concluded from Figs. 2 and 3 that tray 8 is a 

good location for temperature sensor because this tray is 

the most sensitive one to changes in feed conditions and 

manipulated variable. As a result the 8th tray temperature 

control loop is one of the control strategies that will be 

considered later. 

As can be seen from Figs. 2 and 3, trays 23 to 27 have 

the lowest sensitivity to the aforementioned changes and 

therefore temperature differences of trays 8 & 23 and 

trays 8 & 27 can be used for temperature difference 

control strategy. 

 
COMPOSITION  ESTIMATION 

We assume that composition (y) and temperature (�) 

are related to sidestream (u) by the following linear 

models: 

y0(t)=G1(q
-1)u(t-m1)                                                      (28) 

)mt(u)q(G)t( 2
1

20 −=θ −                                           (29) 

y(t)=y0(t-d1)                  (30) 

)dt()t( 20 −θ=θ                   (31) 
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Fig. 2: Column tray temperature variation due to changes in 

manipulated variable. 

 

where y0(t) and �0(t) are the primary (composition) and 

secondary (temperature) outputs at time t and y(t) and �(t) 

are their corresponding measurements. d1 and d2 are 

measurement delays associated with y(t) and �(t) and are 

assumed to be multiple of the sample time. m1 and m2 are 

process transportation lags. 

The relation between composition estimate (�(t)), 

temperature (�(t)) and manipulated variable (u(t)) can be 

expressed as follows[11]: 

)dt(
)q(A

)q(C
)mt(u

)q(A

)q(B
)dt(ŷ 21

1

1
1

1
1

1
1

1 +θ+−=+
−

−

−

−

     (32) 

where: 

)m,mmin(m 21=  

n
n

2
2

1
1

1
1 qa...qaqa1)q(A −−−− ++++=  

n
n

2
2

1
1

1
1 qb...qbqb)q(B −−−− +++=  

n
n

2
2

1
10

1
1 qc...qcqcc)q(C −−−− ++++=  

Estimated composition can be calculated whenever 

the measured values of the temperature �(t) and 

sidestream flow rate u(t) are available. 

Since the sample rate of composition is slower than 

temperature, the parameters of equation (32) in the present 

form can not be estimated by using recursive identification 

methods and some modification should be done. If both 

sides of equation (32) are multiplied by the following 

polynomial [6]: 

( )[ ]11d11d
i

1
1

n

1i
q...q1 +−−−

=
−++− λλπ                              (33) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Column tray temperature variation due to changes in 

feed conditions. 

 

then we have: 

)t()dt()t(y T
1 Θ−φ=

∧

                                                  (34) 

[ )ndt(ŷ),...,d2t(ŷ)dt(ŷ)dt( 111
T

1 −−−−−−=−φ         (35) 

,)ddt(,)d)1n(mt(u,...,)1dmt(u 2111 +−θ+−−−−−  

])dd)1n(t(,...,)1ddt( 2121 ++−θ−+−θ  

[ ]nd0nd1ndd ,...,,...,,,...,,)t( γγββαα=Θ                (36) 

Equation (34) can be used in adaptive framework. 

Whenever composition measurement becomes available, 

the model parameters (�(t) vector) are updated using any 

recursive identification method. Between two consecutive 

composition measurements, composition is estimated  

by using equation (34). In the present work, we have  

used recursive least squares identification and the 

corresponding updating equations are given below: 

+−Θ=Θ )1t()t(                                                         (37) 

            )t(e
])dt()1t(P)dt(1[

)dt()1t(P

1
T

1

1

−φ−−φ+

−φ−
 

−−= )1t(P)t(P                                                            (38) 

         
])dt()1t(P)dt(1[

)1t(P)dt()dt()1t(P

1
T

1

T
11

−φ−−φ+

−−φ−φ−
 

where: 

)t(ŷ)t(y)t(e −=                   (39) 
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Feed Temp. 

 

Feed Flowrate 

 

Feed Comp. 

Bias Bias 

W
1i 

 Y(T) 

b1 
b2 

  b3 b4 

a1 

a2 

a3 

W
2i 

W
3i 

The covariance reseting has been used to avoid 

vanishing the identifier gain and initial value of matrix P 

is set to 1000I. 

 

TEMPERATURE SETPOINT ESTIMATION USING 

ARTIFICIAL  NEURAL  NETWORK 

As it was mentioned before, in multicomponent 

distillation column, variation in feed conditions affect the 

tray temperature-composition relationship and therefore 

for maintaining the column product quality unchanged 

the setpoint of temperature loop should be changed 

accordingly. The static relation which specify steady state 

condition are not valid if some loads are introduced into 

the system. In this work in order to solve this problem, 

artificial neural network have been used to correlate 

temperature and composition and provide setpoint for 

temperature control loop. Designed artificial neural 

network have three layers, input, hidden and output 

layers. Input layer has three perceptrons that receive feed 

conditions (temperature, flow rate and composition) as 

input data. Hidden layer also has three perceptrons which 

receive weighted signals from input layer perceptrons. 

Output layer has one perceptron which receives weighted 

signal from hidden layer and provides tray temperature 

setpoint as the network output. Schematic diagram of the 

proposed neural network is shown in Fig. 4. 

Note: It is assumed that the feed concentration 

changes have a very low frequency. This is true because 

feed is supplied from large tanks and the composition is 

fixed as long as it is supplied from a specific reservoir. 

On the other hand, feed temperature and flow rate can 

change with a higher frequency. Since composition, 

temperature and feed flowrate are the network inputs, 

composition is needed when feed temperature and flow 

measurements become available. But it should be noted 

that the composition can not be measured at the same 

frequency of feed flow and temperature. To solve the 

problem, composition is assumed to be constant until the 

new measurement becomes available. Off-line sampling 

and measurement of feed composition is carried out and 

the result is fed to the network.  

For training and validation tests of each designed 

neural network a series of 100 static data obtained from 

100 steady state conditions of studied distillation column 

have been used. This static data is given in table 3. Half 

of the data has been used for training purposes and the 

rest   has   been   used   for   validation  test.  Since   three 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Proposed artificial neural network structure. 

 

temperature loops will be considered later, three networks 

have been trained. Figs. 5a, 5b and 5c show the output 

errors of these networks. 

 

CONTROL STRATEGIES AND SIMULATION 

RESULTS 

As mentioned before, the composition in a distillation 

column can be controlled by several control strategies:  

a) Using composition-temperature relation and 

controlling the temperature of a specific tray or the 

temperature difference of two trays.  

b) Composition control by using composition measu-

rements.  

c) Using temperature measurements for predicting the 

composition and controlling composition using the 

predicted values of composition (inferential contol). The 

compared different control strategies are listed as given in 

table 4. 

 

INFERENTIAL  CONTROL  LOOP 

In this work the 8th tray temperature was chosen as 

secondary measurement to infer the product composition. 

It is assumed that temperature measurements are 

available every 30 sec and the product composition every 

2.5 min. Real composition values are used for updating 

the model parameters. 

In order to test the ability of adaptive inferential 

estimator in predicting the composition, the flowrate of 

sidestream  was  changed   according   to   Fig. 6  and  the 

estimated  composition   was   calculated   and   shown  in 
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Table 3: Static data used for training and validation of neural network. 

FT  
(º C) 

FF  
(Kmole/h) 

FCB  
(mole %) 

FT  
(º C) 

FF  
(Kmole/h) 

FCB  
(mole %) 

FT 
 (º C) 

FF  
(Kmole/h) 

FCB  
(mole %) 

123 245.1 0.16014 121.6 207 0.157 128.5 260 0.171 

124 245.1 0.16014 122.8 214 0.138 128.5 266 0.168 

125 250 0.16014 123.6 223 0.169 129.2 266 0.16 

125 240 0.16014 125.8 253 0.158 130 250 0.16 

125 235 0.14 126.3 236 0.125 130 230 0.15 

123 235 0.14 123 245.1 0.16014 130 240 0.143 

121 240 0.16 125.3 200 0.155 127.5 270 0.143 

120 250 0.18 121.6 208 0.164 126.3 270 0.153 

122 270 0.15 122.4 216 0.133 125.3 228 0.153 

125 265 0.14 123.3 223 0.143 125.3 240 0.147 

127 255 0.13 124.7 241 0.153 124.4 240 0.147 

129 230 0.11 125.9 256 0.166 122.2 272 0.163 

130 220 0.14 126.4 268 0.181 122.2 266 0.175 

128 200 0.13 126.4 274 0.185 123.6 254 0.172 

127 210 0.15 123.9 284 0.177 120.6 230 0.172 

120 230 0.17 123.9 256 0.177 120.6 240 0.168 

119 210 0.15 124.9 256 0.177 118 260 0.15 

121 235 0.16 124.9 256 0.166 118 230 0.15 

123 265 0.18 127 256 0.166 120 220 0.13 

120 275 0.13 127 220 0.166 120 210 0.145 

124 260 0.14 126 220 0.144 124.2 210 0.168 

125 268 0.17 126 220 0.188 127.3 215 0.185 

125 258 0.17 126 220 0.158 125.5 225 0.185 

124.5 240 0.16 126 220 0.133 124.5 225 0.185 

123.5 230 0.12 126 220 0.122 123.5 225 0.18 

122.5 220 0.13 125 264 0.126 122.5 215 0.18 

121.5 235 0.145 125 264 0.136 121.5 215 0.17 

120.5 265 0.155 122 264 0.136 120.5 235 0.17 

119.5 255 0.165 120 264 0.136 125.7 273 0.16 

118.5 220 0.12 123 257 0.148 126.7 273 0.15 

117.5 210 0.15 123 268 0.148 128 280 0.18 

116.5 230 0.14 124.8 254 0.158    

120 210 0.17 126.6 264 0.171    

120.8 202 0.166 127.4 268 0.171    

Note: FT: Feed Temperature, FF: Feed Flowrate and FCB: Feed Composition of Benzen. 
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Table 4: Different control algorithms. 
 

Control loop Algorithm 

Controlling T8 tray temperature Algorithm 1 

Controlling T8 and T23 temperature difference Algorithm 2 

Controlling T8 and T27 temperature difference Algorithm 3 

control of side stream composition using 
composition measurements 

Algorithm 4 

Inferential control Algorithm 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5: Network error  a) T8 setpoint as the network output, 

b) T23-T8 setpoint as the network output, c) T27-T8 setpoint 

as the network output. 

Fig. 7. Initial large deviation between real and estimated 

composition is due to off initial guess of the model 

parameters. As can be seen from Fig. 7 the estimation 

converges to real composition after 50 min. 

For control purposes, the estimated values obtained 

for model parameters are used as initial values in 

applying infrential control strategy. 

 

SETPOINT  TRACKING 

For temperature loops it is necessary to have the 

setpoints corresponding to the desired product 

composition. Using steady state data, three algebraic 

equations have been developed for obtaining the 

temperature setpoints (for three different temperature 

loops) from the desired product composition. As it was 

discussed earlier these equations are valid if the feed 

conditions are fixed. These equations are as follows: 
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The above equations are obtained using the 

Curvexpert software. In these equations, C is the product 

composition and T is the tray temperature. Optimal 

parameters of the digital PI controllers have been 

calculated by minimization of ISE (Integral of square of 

error) index. Initial guess for these parameters have been 

obtained by using approximated first order model and the 

Ziechler - Nicholes technique. These models are obtained 

from system step responses and are given in table 5. 

In order to investigate the performances of discussed 

control strategies for setpoint tracking, the product 

composition  is  changed from 0.91 to 0.99 and the results 
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Table 5: First order plus lag models. 
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Fig. 6: Sidestream flowrate vs time. 

 

for different algorithms are shown in Figs. a, 8b and 8c. 

The corresponding ISE values are given in table 6.  

As can be seen from the results, algorithm 1 and 

algorithm 2 have better performances than other 

algorithms. 

 

LOAD  REJECTION 

In order to study the performances of proposed control 

algorithms for load rejection, feed temperature and 

composition are increased 7 % and 20 %, respectively. 

The results are shown in Figs. 9a and 9b. The 

corresponding ISE values are given in table 7. 

As it was mentioned earlier, new tray temperature 

setpoints for temperature control loops should be 

calculated for new feed condition. The new temperature 

setpoints have been obtained by using the trained 

artificial neural networks. 

It is evident from the simulation results that the best 

performance belongs to algorithm 1, considering both 

setpoint tracking and load rejection. Also, using 

inferential control strategy has better performance 

compare to the direct composition control. 

Table 6: ISE values for set point tracking. 
 

Algorithm (ISE) 

Algorithm 1 1.461 

Algorithm 2 1.467 

Algorithm 3 1.543 

Algorithm 4 1.552 

Algorithm 5 1.488 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Composition estimation: real value (solid line), 

estimated value (doted line). 

 

CONCLUSIONS 

In the present paper, different one point control 

strategies for an aromatic distillation column have been 

considered. Using the conservation laws, the system has 

been modeled under steady state conditions. The 

accuracy of the model has been tested by comparing the 

simulation results with industrial data and an acceptable 

agreement has been observed.  

For temperature controlloops two static and one 

adaptive dynamic estimators have been developed. The 

first static estimator is in the form of an algebraic 

equation while the second one is a multilayer artificial 

neural network. Simulation results indicate that 

controlling the 8th tray temperature has the best 

performance for both setpoint tracking and load rejection. 

Also, using inferential control strategy, compared to 

direct composition control, improves the performance of 

the control loop.  

Due to negligible pressure drop along the column, 

controlling the temperature difference of two trays  

has no advantage over the single tray temperature control 

loop. 
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Fig. 8: Setpoint tracking results a) algorithm 1 (solid line),�

algorithm 2 (doted line) and algorithm 3 (dash line)  b) 

algorithm 4 (solid line) and algorithm 5 (doted line). 

 

Nomenclatures 

A1,B1,C1                                                 Polynomials of z-1 

Atray                                         Active area of the tray, (m2) 

B                            Bottom product flowrate, (kmole/min) 

C                                                         Product composition 

D                 Distillate flowrate (top product), (kmole/min) 

d                                                           Measurement delay 

e                                                                 Estimation error 

effi,k                       Murphree efficiency for component (i)  

                                                                              on tray k 

f                                                               Feed tray number 

F                                                     Feed rate, (kmole/min) 

G                                                              Polynomial of q-1 

H                                  Molar vapor enthalpy, (MJ/kmole) 

h                                   Molar liquid enthalpy, (MJ/kmole) 

heighttray                                   Total height of the tray, (ft) 

i                                                               Component index 

j                                                                       Tray number 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Load rejection results a) algorithm 1 (solid line), 

algorithm 2 (dash line) and algorithm 3 (doted line)  b) 

algorithm 4 (solid line) and algorithm 5 (doted line). 

 

K                               Vapor liquid equilibrium coefficient 

L                                    Liquid flowrate leaving each tray,  

                                                                        (kmole/min) 

Levelk                                                Liquid level of tray k 

lengthweir                                           Tray weir length, (m) 

Mi,k                                   Molar hold-up of component (i) 

N                                                               Number of trays 

Nc                                                    Number of component 

Pi,k
sat                 Saturated pressure of component ‘i’ in the  

                                                        temperature of plate‘k’ 

Pk                                                 Total pressure of tray ‘k’ 

P                        Covariance matrix in least squars method 

QC                         Condenser external cooling rate, (MW) 

QR                            Reboiler external heating rate, (MW) 

R                                                   Recycle molar flow rate 

T                                                               Temperature, (k) 

V               Vapor flowrate leaving each tray, (kmole/min) 

voltray                                                               Tray volume 
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Table 7: ISE values for load rejection. 
 

Algorithm Load 1 

Algorithm 1 2.81e-4 

Algorithm 2 2.54e-3 

Algorithm 3 1.81e-3 

Algorithm 4 3.26e-2 

Algorithm 5 2.85e-3 

 

w                                                   Sidestream tray number 

W                                  Side stream flowrate, (kmole/min) 

X                                 Liquid mole fraction of component 

y                                   Vapor mole fraction of component 

yi
*                                Equilibrium vapor mole fraction of 

                                                                      component (i) 

Zi,f                          Mole fraction of component (i) in feed 

z-1                                                  Backward shift operator 

U                                                                 Energy hold-up 

�v
k                                                                 Vapor density 

�lk                                                                Liquid density 

�                                                 Secondary process output 

Ø                                                      Vector of input-output 

�                                          Vector of parameter estimates 
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