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ABSTRACT: In present paper, a numerical analysis for a rectangular cavity filled with a 
anisotropic porous media has been studied. It is assumed that the horizontal walls are adiabatic 
and impermeable, while the side walls of the cavity are maintained at constant temperatures and 
concentrations. The buoyancy force that induced the fluid motion are assumed to be cooperative. In 
the two extreme cases of heat-driven (N ≤  1) and solute-driven (N ≥  1) natural convection, scale 
analysis is applied to predict the order of magnitudes involved in the boundary layer regime. 
Especially, the effects of anisotropic properties on heat and mass transfer have been considered. 
The variation of Nusselt and Sherwood numbers for values of permeability ratio for a wide range of 
thermal Rayleigh number, buoyancy ratio, and Lewis number are presented. It is demonstrated that 
the anisotropic properties of the porous medium considerably modify the heat and mass transfer 
rates from that expected under isotropic conditions. 
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INTRODUCTION 
Natural convection through anisotropic porous media 

is of considerable interest in many industrial applications 
of geophysics, hydrology, oil extraction and other 
processes. Anisotropy usually arises from a symmetrical 
geometry of grains or fiber or scientific conditions. 
Precise studies for natural heat transfer in anisotropic 
porous media, despite its wide range of application, are 
few in number. Previous studies were about natural heat 
transfer in concentrated anisotropic porous media upon 
anisotropic environment for developing the flow for heat 
transfer in horizontal layers under lower heating . Earlier 
studies  on  natural  convection  in  saturated   anisotropic  
 
 
 

porous media have generally been confined to the effects 
of anisotropy on the development of the convective flow 
and heat transfer in a porous layer of infinite horizontal 
extent heated from below. A literature review may be 
found in the article of Nilsen and Storesletten [1] as well 
as in the book by Nield and Bejan [2] and Ingham and 
Pop [3]. Several studies have also been reported concerning 
natural convection in vertical anisotropic porous layers 
heated from the side. About concerned cause that is a 
square cavity filled with anisotropic porous media heated 
by two sides, Ni and Beckerman [4] presented a 
numerical solution. All studies performed  [5,6]   includes  
 
 
 

* To whom correspondence should be addressed. 
+ E-mail: aerospace@kntu.ac.ir 
1021-9986/08/2/39        7/$/2.70 
 



Iran. J. Chem. Chem. Eng. Muasavi, S.M. and Shahnazari, M.R. Vol. 27, No.2, 2008  
 

40 

the buoyancy force. Recently, interest for flows resulting 
from the combined action of both temperature and 
concentration has surged in view of its importance in 
various engineering problems. Despite this fact relatively 
little research work has been reported concerning double-
diffusive convection in a porous medium, especially 
when the latter is anisotropic which is the case more often 
than not. In this paper natural convection as well as 
characteristics of mass and heat transfer in a cavity 
including anisotropic porous media have been studied. 
The equations were solved completely in numerical 
methods and the results are presented for wide range of 
effective parameters. 

The results presented here are relevant to proper 
understanding of double-diffusive natural convection 
characteristics in anisotropic porous media. 

 
THEORY AND FORMULATION 

The studied system is shown in Fig. 1. Some values 
are assumed for height of cavity (H), width (L) and 
anisotropic porous media as well as permeability 
principal directions (KX , KZ) with horizontal and vertical 
coordinate. Different vertical walls are assumed at 
constant temperature and concentration, whereas 
horizontal walls are in isolated and impermeable form. 
the flow density in porous media is modeled by 
Boussinesq formula. 

[ ]CT1 cTm ∆β−∆β−ρ=ρ                                               (1) 

βT and βC represent for thermal concentration 
coefficient of expansion, respectively. The flow is 
considered  laminar and the cavity is long enough in the 
direction of y so that we could consider this system as 
two-dimensional. 

Conservation equations governing mass, momentum 
and energy are dimensionless as follows: 

Dimensionless boundary conditions on the wall of the 
cavity are: 
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Fig. 1: Schematic of the studied system. 
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In the above equations dimensionless variables are 
determined as follow: 
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The equations indicate five determinative dimension-
less parameters. Theses parameters are thermal Rayleigh 
number (Ra), buoyancy ratio (N), Le number (Le), cavity 
dimensional ratio (A) and permeability ratio (K) that are 
defined as follow: 
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The D, ν, g are gravity acceleration, cinematic 
viscosity, fluid and mass diffusivity coefficient and 
α=k/ρCf  is effective thermal diffiusivity coefficient in 
porous media. Heat and mass rates in the direction of 
vertical walls are determine by heat and concentration 
fields. Also average Nusselt and Sherwood number is 
defined as follows: 
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DIMENTIONAL  ANALYSIS 

Due to the effect of the different parameters of mass 
and heat transfer on each other, dimensional analysis of 
the equations (3)-(9) does not show a certain point. 
However in limiting conditions, mass driven or heat have 
main effect on the normal flow. By analyzing order of 
magnitude we could predict the boundary conditions. 

In the boundary layer regime,most of the fluid motion 
is restricted to a thin layer of thickness δT and height H 
(δT ≤H). In this region the continuity equation (3) 
requires the following balance: 

wu

T
≈

δ
                                                                       (12) 

where H/TT δ=δ  is the dimensionless thickness of 
the vertical boundary layer. Turning our attention to the 
momentum balance in the same layer, the following 
scales are dictated from equations (3) and (4), respectively:  
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where ∆px is the pressure change across the thermal 
layer and ∆pz the pressure difference between the 
horizontal boundaries. The energy equation (5), 
expressing a balance between convection and conduction 
of heat, gives: 
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Combining  the above equations  taking into account 

the fact that 1T ≤δ results in: 
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The scaling properties of the mass transfer are similar 
to the above equations. Limiting conditions can be 
expressed in relation to buoyancy ratio. N<<1 shows that 
heat driven value is higher than mass driven value and 
vice-versa, in N>>1 normal flow in environment causes 
from mass driven. By introducing Kcr, from order of 

magnitude of 21
TR − , order of magnitude of heat and mass 

boundary, layer thickness, Nusselt and Sherwood number 
can be expressed as follows: 
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Table 1: Comparing predicted results with others. 

 Le 2000 1000 400 200 100 RT 

Nu 
Sh 
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13.48 
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Present 
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NUMERICAL  SOLUTION 

Equations (2) - (6) have been solved by finite volume 
(F.V). Conservation equations have been described on 
control volume and intergrated. Integral equations have 
been extended by combination method. Linear equations 
of conservation equations have been solved by ADI 
method. 

Pressure speed conjugates have been analyzed by trial 
and error method in pressure correction (SIMPLEC 
Algorithm). Non-uniform mesh is applied in the 
programs and very fine grid is applied near walls. 
Maximum convergence error of all equations is subjected 
as 10-5. 

The calculation was done for a wide range of 
parameters. In order to control the accuracy of the 
calculation for isotropic case the adopted results are 
compared with existing results issued by the other 
researchers. The adopted results show a good agreement  
with the results of Ni and Beckerman [10] and Goyeau 
[11]. Whereas, the predicted values by Trevisan and 
Bejan [12] for Nusselt and Sherwood number especially 

TR =400 is higher than the actual value. Table 1 shows 
the values. 

RESULTS AND DISCUSSION 
All indicated results here are for quadratic cavity 

(A=1). Fig. 1 shows the effect of permeability at Le=10,  
N=0  ,  RT = 105 upon Sh and Nu. 

As is shown in Fig. 2 Nusselt and Sherwood numbers, 
when K is low enough, go toward net diffiusive regime 

)1Sh,1Nu( →→  . Also for K>>1 both numbers have 
asymptote. However, it is seen from Fig. 2 that both Nu 
and Sh reach maximum values when K ≥  1 and are 
independent of this parameter when the latter is made 
larger. This situation corresponds to a porous medium 
with an isotropic permeability Kz. 

The results  shows the existence of three regimes for 
mass and heat transfer under problem circumstances for 
different values of K. These regimes are:  

I) Net diffiusive for lower value of K.  
II) An  intermediate  regime  together  with  Nu(Sh) 

linear increasing based on K increase. 
III) A convective regime, where the increased effect 

of K on Nu(Sh) is inconsiderable, these values shall have 
asymptotic value and shall be independent of (K) 
permeability ratio.  

Effect of Rayleigh thermal number upon the variation 
of Nu(Sh) based on K is shown in the Fig. 3. As is shown 
transition shall start from lower values of K for 
higher TR . Meanwhile for the lower amounts of Rayleigh 
thermal value, transition includes lower ranges of K. 

In the limit N →∞, for which the buoyancy forces that 
drive the flow are mainly due to gradients of solute,  the 
numerical results obtained in this study were also 
correlated to yield 
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Fig. 2: The effect of permeability(K) upon Nu(Sh) (A=1, 
RT=104, Le=10). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: The variation of Nu(Sh) based on K in different RT 
(N=0, Le=10, A=1). 
 

Fig. 4 shows the effect of Le number upon Sherwood 
number variation based on permeability ratio. Three 
referred regimes are clear at this point. For each definite 
K, Le increase shall be cause the increase of mass 
transfer. Also such increase causes required K for 
commencing transition. It is also observed from Fig. 4 
that, as Le is increased, a smaller value of K is required to 
reach the diffusive regime. Thus, this latter is ≈10-3 10-2 
when  Le =1 and for K ≈  reached for K when Le =10. 

Finally the effect of N upon the variation of Sh 
number based on K is shown in the Fig. 5. By the 
increase of Sh amount for the higher amount of N at 
constant K as well as decrease of required amount of K 
for starting transition could be adopted from the figure. 

For a given value of Le the evolution of Sh with K, 
i.e. the existence of three different regimes, is similar to 
what has been discussed in Fig. 2. For a given value of Le  

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: The effect of Le number upon Sherwood number 
variation based on K (A=1,RT=103, N=0). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: The effect of N upon Sh number variation based on K 
(Le=10, RT103, A=1). 
 
the evolution of Sh with K, i.e. the existence of three 
different regimes, is similar to what has been discussed in 
Fig. 2. 
 
CONCLUSIONS 

Numerical analysis in the field of mass and heat 
transfer simultaneously has been observed in a vertical 
cavity filled with anisotrop porous media where anisotrop 
axis are assumed adjust to coordinates axis. Order of 
magnitude analysis are presented to relate between 
parameters in limiting condition where only one of the 
gradients of mass or heat is effective. Numerical solution 
of equation are Nu, Sh diagram in terms of variation of K 
in different condition. These numerical results indicate 
the existence of three regimes, namely, a diffusive one for  
low values of K, a transition regime when Nu and Sh 
increase   as   the  value   of  K   is   made   larger  and  an  
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asymptotic regime where Nu and Sh become independent 
of K and reach constant values as the value of K is made 
large enough. The transition between the different 
regimes depends on the thermal Rayleigh number RT, 
buoyancy ratio N and the Lewis number Le. The 
correlations proposed in this study are found to be in 
good agreement with the numerical results and this for a 
large range of the governing parameters. The boundary 
effects, which are expected to be important in porous 
media with high porosities, have also been investigated in 
this study on the basis of the Brinkmanextended Darcy 
model. The numerical results indicate that when Da is 
small enough the above results, obtained on the basis of 
Darcy’s law, are valid. For intermediate values of Da the 
boundary frictional resistance becomes gradually 
important and slows down the convective motion. As a 
result, the effects of the anisotropic permeability of the 
porous medium on the convection heat transfer become 
less and less important. 
 
Nomenclatures 
Latin Symbols 
A                                           Cavity dimension ratio (H/L) 
D                                                               Mass diffusivity 
Da                                                    Darcy number (K 2/H2) 
gH                                             Gravity acceleration (m/s2) 
H                                                             Cavity height (m) 
Kx                        Permeability in x-direction (kg/Pa m 2s) 
Kz                         Permeability in z-direction (kg/Pa m2 s) 

K/KtK cr+=                   Permeability corrected ratio  

                                                                         (kg/Pa m2 s) 
Kcr                                                      Critical permeability 
L                                                         Cavity thickness (m) 
Le                                                                 Lewis number 
N                                                                 Buoyancy ratio 
Nu                                                              Nusselt number 
P                                                                     Pressure (Pa) 
RT                                                     Rayleigh heat number 
Rc                             Rayleigh concentration ratio (RTNLe)  
RaT                  Rayleigh heat number applied for one flow  
                                                                              (RT / Da)  
C0                                          Dimensionless concentration 
Sh                                                           Sherwood number 

)CC(C 21 ′−′=′∆       Determined concentration difference  
                                                                            (kmol/m3) 
T                                                              Temperature (°C) 

)TT(T 21 ′−′=′∆    Determined temperature difference(°C) 

w,v,u                                            Dimensionless velocity 

z,x                                           Dimensionless coordinates 

 
Greek Symbols 
α                                          Effective Thermal Diffusivity 
βT                         Thermal coefficient of expansion (°C-1) 
βC                              Concentration coefficient (m3/kmol) 
δT                                     Thermal diffusion thickness (m) 
δC                                          Mass diffusion thickness (m) 

Tδ                         Dimensionless thickness of the thermal  
                                                                    boundary layer 
µ                               Dynamic viscosity of the fluid (Pa.s) 
λ                                               Relative viscosity = µeff / µ 
ν                                                Kinematic viscosity (m2/s) 
ρ                                              Density of the fluid (kg/m3) 
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