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ABSTRACT: Simultaneous capillary dominated displacement of the wetting and non-wetting 
phases are processes of interest in many disciplines including modeling of the penetration of 
polluting liquids in hydrology or the secondary migration in petroleum reservoir engineering. 
Percolation models and in particular invasion percolation is well suited to characterize the slow 
immiscible displacement of two fluids when both the gravity and viscous effects are negligible.  
In particular, the characteristic of the percolating cluster and the other important percolation 
properties at the breakthrough can be inferred. However, with the inclusion of the gravity forces, 
the behavior may change. For example, as the magnitudes of the gravity forces are comparable to 
the capillary forces, we have observed a transition in the structure of the interface (i.e. invasion 
front) depending on the dimensionless Bond number (i.e. ratio of gravity to capillary forces). 
We have taken a numerical study of the displacement of two immiscible fluids in the presence  
of the gravity force in a network of random pores. The main contribution is to investigate the effect 
of heterogeneity by considering various throat size distributions. We consider the injection to take 
place from one side of the system and displace the displaced fluid from the other side. The condition 
of the stability or instability of the front (or interface) is observed to be dependent on  
the dimensionless bond number as well as the heterogeneity of the system. 
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INTRODUCTION 
Flows of fluids through porous media is important in 

many industrial and geological applications, such as  
in studying of the efficient hydrocarbon recovery techniques 
by reservoir engineers or in modelling ground water flow 
by hydrologists [1]. The porous media which are typically 
made of rock grains and disordered void spaces are 
usually characterized by porosity φ and permeability k  
 
 
 
 

in the case of a single phase flow. The pore spaces are 
approximately 10-100 µm across and are usually occupied 
by hydrocarbons and water in a typical hydrocarbon 
reservoir. Hence we usually observe a multi phase flow  
in porous media. Fluid displacement in porous media 
depending on the scale of the region can be controlled  
by several forces including the pore scale capillary  forces  
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(on the pore level), viscous forces and gravity forces 
(over larger distances) [2]. Hence, the type of the 
displacement observed, depends on the capillary number, 
the ratio of the viscous pressure drop at the pore scale to 
the capillary pressure, and the Bond number, the ratio of 
the hydrostatic pressure drop over a pore to the capillary 
pressure. Typical flow rates in reservoirs are of order of  
a few feet per day. It should be noticed that the full 
description of displacement process in porous media  
is very difficult due to the variety of physical phenomena 
involved. For example, the flow of two immiscible fluids 
depends on the wetting properties of the two fluids, their 
viscosity ratio, their respective densities, and 
displacement rate. Moreover, the experimental 
measurements are extremely difficult to perform and at 
low saturations the results are very uncertain. This is why 
numerical simulations usually rely on the available 
empirical correlations to predict the relative permeability 
and capillary pressure from the measured two-phase 
properties. However, it is important to have a reliable 
physically-based tool that can provide plausible estimates 
of these macroscopic properties. Fatt [3] initiated 
describing the pore space as a network of pores connected 
by throats with some idealized geometry to find the 
capillary pressure and relative permeability curves. Since 
then, the capabilities of network models have improved 
enormously and have been applied to describe many 
different processes. Blunt & King [4] derived some 
macroscopic parameters from simulations of pore scale 
flow through simple networks. For a random close 
packing of spheres, Bryant & Blunt [5] were able to 
predict elastic and electrical properties and relative 
permeability of the network. Øren et al. [6] extended this 
approach by reconstructing a variety of sandstones and 
generating topologically equivalent networks from them. 
Using network-based models several authors have been 
able to predict the macroscopic flow properties and oil 
recovery for a variety of two and three phase systems [7]. 

Darcy’s law is the basic transport equation at  
the continuum scale for a typical two phase system where 
the kri are the relative permeabilities of each phase, 
dependent on the fluid saturations (Si).  
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This law is used in  conjunction  with  the  assumption  

of incompressible fluid for the total flux to give  
an equation for the continuity of each phase as follows: 
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This produces the most basic set of equations used  
to describe multi-phase flow in porous media. In practical 
application of this, there is question of how to find  
the efficient microscopic averaging of the pore scale physics 
in order to determine the critical parameters such as relative 
permeability. One physically based approach to do this  
is to use percolation concepts from percolation theory. 

The mathematical description of percolation theory 
was first introduced by Broadbent & Hammersley [8]. 
The spread of a fluid through a disordered medium may 
happen in two ways. In the first type the fluid particles 
decide were to go in the randomness medium which is  
the familiar diffusion process. In the other type the 
randomness is ascribed to the medium and that is  
the medium which dictate the path of particles. This 
approach that is called percolation process was considered 
by Broadbent & Hammersley. A description of this 
mathematical theory was given by Stauffer and Aharony [9] 
and various applications of this theory can be found  
in Sahimi [10]. There is another kind of percolation called 
invasion percolation that was first described by  
Wilkinson & Willemsen [11]. The model is motivated by 
the problem of one fluid displacing another from a porous 
medium under the action of capillary forces, but  
in principle it may be applied to any kind of invasion 
process which proceeds along a path of least resistance. 
This type of percolation model has been used to either 
validate the experimental observations at the pore scale or 
to infer macroscopic properties of the pore networks. 
Many experiments using micro models have been performed 
to study either displacement mechanisms at the pore level 
or displacement and trapping at the large scale for considering 
the effect of capillary, gravity and viscosity forces [12, 13]. 
For example, Toubou et al. [12] found a good agreement 
between simulated patterns of the stochastically generated 
pore network (such as trapping and fingering) and the 
micro-model based experimental observations. 

 
PERCOLATION  CONCEPTS 

Percolation theory is the mathematical model of the 
connectivity in a geologically complex system [9].
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It  has applications in many areas from the spread of 
diseases to the conductivity of porous media used for 
hydrocarbon recovery. Consider an infinite lattice of sites 
which are placed randomly and occupied with a 
probability p. Clusters from the occupied neighbouring 
sites and grow in size as the occupancy probability 
increases. There is a particular value of p, called the 

percolation threshold ∞
cp , at which one large cluster 

spans the whole region. There are also other small 
clusters which get absorbed to the largest cluster as p 
further increases. Then, there are some simple scaling 
laws which describe the behaviour of the system around 

the threshold ∞
cp . These are: 

( )cP(p) p p
β∞∝ −                                                            (3) 

c(p) (p p )∞ −νξ ∝ −                                                            (4) 

Where P(p) is the probability that an occupied site 
belongs to the spanning cluster (i.e. connected fraction 
which represents the strength of the percolating cluster) 
and ξ(p) is the correlation length (which is a measure  
of the “typical” size of the clusters, excluding the infinite 
cluster when the system is above the threshold). Note that 
the correlation length ξ(p) is related to the two point 
correlation function g®, which is the probability of two 
sites, separated by a distance r, being in the same cluster. 
The important feature is that the critical exponents β and 
v is independent of the kind of the lattice or even if there 
is a lattice or not (continuum system); they only depend 
on the dimensionality of space (i.e. 2D or 3D).  Values 
for β=5/36 and 0.4 (in two and three dimensions 
respectively), and ν=4/3 and 0.88. This is known as 
universality and is an important concept in percolation 
theory which enables us to study and understand the 
behaviour of a very wide range of systems without 
needing to worry too much about the small scale details. 
However, the percolation threshold does depend on the 
detail of the lattice and has to be determined from few 
simulation results [9]. The other issue we often face is 
due to the finite size effects as all systems are finite in 
size. This is addressed using the known finite size scaling 
within percolation theory [9]. Recently, the effect of 
anisotropy and size distribution on the percolation 
properties of finite size systems in the case of fractured 
porous medium has been addressed [14]. 

PERCOLATION MODEL OF THE IMMISCIBLE 
DISPLACEMENT 

Let us start with a simple case of displacement of  
a fluid by another fluid in a two-phase system i.e.  
the problem of oil/water flooding or secondary migration. 
Fluid movement can be governed by viscous, gravity and 
capillary forces [15]. For systems without gravity we 
expect different flow regimes depending on the capillary 
number. Viscous forces are mainly dependent on the 
viscosity of the fluids. The high viscosity of the displaced 
fluid can lead to a highly unstable displacement pattern 
with a rapid breakthrough of the displacing fluid into the 
displaced fluid called viscous fingering [16]. This can be 
neglected by considering the situation that the displacing 
fluid has a higher viscosity than the displaced fluid. Then, 
for slow displacements the invasion percolation, a specific 
form of percolation theory, can be used to model the 
displacement and to describe the structure and amounts of 
fluids in a two-phase displacement at breakthrough [11, 17]. 
The displacement in the model is controlled by the 
heterogeneity of the capillary pressures along the interface. 

Consider a lattice with sites and bonds representing 
pores and throats respectively. The throats can be 
classified into allowed, occupied and accessible and two 
processes can be considered for an immiscible 
displacement. An event where a wetting phase (i.e. water) 
is displaced by a non-wetting phase (i.e. oil) with a 
positive capillary pressure is called drainage while 
imbibition is a process where the water enters the porous 
medium and displaces the oil phase. This simple network 
model along with percolation concepts can then be used 
to find many important properties such as capillary 
pressure and/or relative permeability curves in porous 
media [18, 19]. First consider the invasion percolation for 
modelling of a drainage process. In order to overcome the 
pressure caused by the interfacial pressure to drive the oil 
into the water phase we need to apply an equivalent to 
capillary pressure Pc as follows: 

( )
c nw w

2 cos
P P P

r
σ θ

= − =                                            (5) 

Where σ is the interfacial tension, θ is the contact 
angle and r is the pore throat radius. 

In this study we have used a network of pores linked 
by throats of varying radii. The experimental observations 
of  rock  permeability  data  show  a  skewed   distribution  
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Fig.1: A simple illustrative network of pores linked by the 
throats of varying radii. The numbers represent the filling 
order of pores. 
 
with a long tail that often can be fitted with a log normal 
distribution. To model this we may use a log-normal 
distribution for the throat radii. Therefore in this 
simulation work in order to have a realistic permeability 
distribution, we used a lognormal distribution for the 
throat radii. 

By increasing the pressure applied to the invading oil 
phase in the drainage process, the pores will first fill from 
the largest radius (where the entry pressure to fill is the 
lowest according to Eq. (5)). However, the pores can be 
filled only if they are connected to the inlet face and in 
contact with the oil phase. For example, in the simple 
illustrative network below where the oil comes from the 
left the pores will fill in the order 1, 2, and 3 and so on 
where the labels are in order of the throat radius. 

By continuing this process, we get a percolating 
cluster with large regions unswept at the breakthrough of 
the oil to the right side of the system. The flow can only 
take place through sites already connected to the inlet. 
This is the simple model of invasion percolation as first 
introduced by Wilkinson & Willemsen [11]. 

We developed a programme in “MATLAB R2006a” 
to simulate this process and determine the required 
results. In practice, with this approach we do not need  
to solve the governing flow equations (Eq. (2)) since we 
model the displacement by considering the heterogeneity 
of the capillary pressures along the interface.  
In the standard invasion percolation model, the sites on a 
regular lattice are assigned random numbers to represent 
the capillary pressures (invasion thresholds) that must be 
overcome to invade them. The random numbers are taken 
from  the  pore  throat  radii  distribution  that is observed 

 
 
 
 
 
 
 
 
 
 
 
Fig. 2: A typical percolation structure at the breakthrough 
obtained from invasion percolation which simulates a 
drainage process. 
 
from CT-scan analysis on the rock sample. However, 
such analysis may be very difficult in the case of 
carbonate rock samples as the large scale heterogeneities 
is likely to be observed. Another complexity is the choice 
of triangular or circular geometry for the pore throat flow 
area. For simplicity we consider a two dimensional lattice 
of sites and neglect the effect of the pore throat flow area 
geometry. We assumed random numbers representing the 
resistance to the flow to be taken from a log normal 
distribution to be in line with the experimental permeability 
observations. However, again for simplicity reason and 
without lose of generality we may consider this to be in 
the range of (0, 1). On a lattice of size 200×200,  
we proceed the process by selecting the unoccupied 
external perimeter site with the lowest random number 
and filling it to represent the invasion of the non-wetting 
fluid into the widest pore throat. The unoccupied external 
perimeter consists of all the unoccupied sites with 
occupied nearest neighbor sites that can be reached by the 
random walk that originate outside of the region occupied 
by the growing pattern (i.e. cluster of occupied sites) and 
consist only those between unoccupied nearest neighbor 
sites. Fig. 2 represents a typical structure of invader fluid 
observed in the lattice of size200×200. 

The main quantities of interest are the fraction of sites 
which become occupied by the oil, and the distribution  
of random numbers of those sites. In this simple model 
assuming no trapping, it is observed that the number of 
sites occupied by the invader in spanning cluster NI may 
be scaled as NI ∝ Ld where L is the lattice size and “d”  
is known  as  the  fractal   dimension  of  the  cluster  with  
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d = 1.89 and 2.52 in two and three dimensions, 
respectively. Notice that the values are consistent with the 
fractal dimensions of ordinary percolation theory. 
Moreover, the volume fraction of the invader SI follows 
the scaling law SI ∝ L-α where the numerical value for the 
exponent is α = 0.11 and 0.48 in two and three 
dimensions [11] that are consistent with a universal 
values derived from random percolation models. Hence, 
it has the same universality class as random percolation. 
Invasion percolation with trapping, on the other hand, 
causes the phenomenon known as residual oil. Numerical 
investigations have shown that the fractal dimension of 
the invader cluster is 1.82 in two dimensions which  
is less than 91/48 of random percolation with no significant 
difference in three dimensions. Moreover, the fraction of 
volume occupied by the invader is proportional to the 
grid size to power -0.18 in two dimensions. If we pursue 
with the invasion process beyond the point of percolation, 
a second percolation threshold is reached when the defender 
consists of isolated clusters only and the process stops. 
Then the system has reached saturation of residual oil.  
It should be noticed that although the properties of invasion 
percolation are consistent with that of random percolation 
the spanning clusters are not precisely the same. 

 
INVASION  PERCOLATION  IN  THE  PRESENCE 
OF  GRAVITY 

In some situations the gravity forces acting on the 
density difference between the two fluids can be 
comparable to the capillary forces. In these cases we 
expect this to modify the local dominant forces 
depending on the scale of the study. Here we again model 
the slow flow displacement (by neglecting the viscous 
forces) on the same network as before but considering  
the gravity forces. We have examined how gravity forces 
can destabilize the interface, depending on the relative 
position of the denser fluid. Simulation results of slow 
displacement under gravity have shown that the interface 
keeps a finite width (defined as the root mean square 
value of the front extension in the direction of the flow) 
along the direction of apparent gravity in line with  
the experimental results of Wilkinson [2]. This width  
is found to scale with the Bond number where the numerical 
value of the scaling parameter is consistent with the 
gradient percolation prediction. The competition between 
gravitational and capillary forces can be described  

in terms of the dimensionless Bond number Bo (the pore 
scale ratio between the effects of gravity acting on the 
density difference and the capillary forces) given by: 

2

o o
( g ) g

B                B
( / )
∆ρ ε ∆ρ ε

= ⇒ =
σ ε σ

                      (6) 

Where ∆ρ is the density difference between the two 
fluids, g is the acceleration due to gravity, ε is the pore or 
grain characteristic size and σ is the interfacial tension [20]. 

In order to carry out a systematic experimental study 
of the relationships between the invasion pattern and  
the Bond number, it is necessary to vary the interfacial 
tension, the density difference or the acceleration.  
σ and ∆ρ can be changed only by using a series of liquids. 
Since σ and ∆ρ cannot be varied independently, these 
quantities must be carefully measured for each pair of 
liquids. The acceleration g can be varied using a centrifuge. 
However, it is much more convenient to vary the effective 
acceleration due to gravity by using inclined surface.  
This was previously seen experimentally by using  
the porous medium consisting of a monolayer of glass beads 
trapped between two parallel sheets of transparent 
material [20]. The effective acceleration was varied by 
changing the angle of inclination. However, in reservoir 
conditions with a typical pore size of 0.1mm in sandstone 
reservoirs; for a gas injection the typical values of 
∆ρ=800 kg/m3, σ=0.004 N/m, and for a water injection  
∆ρ=200 kg/m3, σ=0.035 N/m may be used to estimate the 
bond number in the range of 0.0002-0.02.  

The growth of the fluid-fluid displacement pattern  
can be described in terms of the propagation of growth 
front, or active zone, into the porous medium. In the first 
case the active zone was seen to be stabilized by the 
effects of gravity acting on the density difference between 
the two fluids. In such cases, the fluid-fluid displacement 
pattern can be described in terms of a compact packing of 
blobs of size ζ, and each blob has a self-similar fractal 
invasion percolation structure on scales in the range ε<l<ζ: 
Similarly, the external perimeter of the fluid-fluid 
displacement pattern can be described in terms of  
a horizontal packing of blobs with self-similar fractal 
structure. Hence the active zone is the entire external 
perimeter as shown in Fig. 3. In the second case, the 
active zone was seen to be destabilized by  the  effects  of 
gravity acting on the density difference between the two 
fluids, and a finger of the low density non-wetting fluid
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Fig. 3: Three realizations generated by the slow gravity 
stabilized displacement of a wetting fluid by a non wetting 
fluid in a quasi-two-dimensional porous medium in a lattice of 
size 200200 ×  where (a) B=0, (b) B=0.0001, (c) B=0.001. 
 
was driven upwards through the porous medium. In such 
case, the fluid-fluid displacement pattern can be 
described in terms of a row of fractal blobs along the 
lower edge of the cell and a vertically oriented string of 
blobs that form a self-affine directed random walk. Again, 
each blob has a size of ζ and each blob has a fractal 
invasion percolation structure on scales in the range  
ε < l < ζ: Hence, the active zone is confined to the last 
(highest) blob in the string of blobs as shown in Fig. 4. 

The results of such experiments can be simulated 
quite well by using simple modifications of the standard 
site invasion percolation model. To do so the effects  
of gravity acting on the density difference between the 
two fluids can be represented by replacing the previous 
random numbers or invasion thresholds as follow [20]: 

)i(BY)i(PP c +=                                                              (7) 

Where Y(i) is the y-coordinate of the ith site and B is 
the gradient acting in the y-direction which is related to 
the bond number. In the case of stabilized invasion 
percolation B>0, for example in the downward 
displacement at capillary control of a heavier fluid by the 
injection of a lighter fluid, or in drainage in a field of 
decreasing permeability, the percolation probability 
decreases in the direction of displacement, the effect of 
the gradient B is to prevent the trailing edges of the active 
zone from getting too far behind the leading edges.  
The crossover length ζ provides a measure of the width of 
the active zone. In the absence of a gradient, the external 
perimeter of an invasion percolation cluster is the same as 
the external perimeter of an ordinary percolation cluster. 
Figs. 3 and 4 represent the stabilized and unstabilized 
effect of the gravity [20, 21]: 

In ordinary percolation, the correlation length,  
or crossover length is given by: 

c
c

c

(p p )
~        for p p

p

−ν−⎡ ⎤
ξ >⎢ ⎥

⎣ ⎦
                                    (8) 

Where p and pc are respectively the occupancy 
probability and the percolation threshold and v is the 
correlation length exponent. It is derived based on the 
fact that at the threshold point the typical size of clusters 
are comparable to the system size. 

The exponent ν has a universal value of 4/3 for  
two-dimensional percolation problems. In gradient 
stabilized invasion percolation, the trailing edge of the 
active zone propagates by invading sites with thresholds 
that would be too large to occupy without the effect of  
the gradient. This corresponds to a percolation process  
in which the fraction of sites occupied exceeds pc by  
an amount given by: 

ζ− B~pp c                                                                      (9) 

(a) 

(b) 

(c) 
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Fig. 4: Four realizations generated by the slow gravity destabilized displacement of a wetting fluid by a non wetting fluid in a 
quasi-two-dimensional porous medium in a lattice of size 200×200 where (a) B=0, (b) B=-0.0001, (c) B=-0.001, (d) B=-0.01. 

 
It follows from Eqs. (8) and (9) that: 

( ) (4 / 7)1~ (B )               ~ B ~ B
ν

−−ν −ν+ζ ζ → ζ              (10) 

A similar argument can be used for gradient 
destabilized invasion percolation processes like the 
situation shown in Fig. 4. In this case, where B < 0, like 
the downward displacement at capillary control of a 
lighter fluid by the injection of a heavier fluid, the 
upward displacement of a heavier fluid by the injection of 
a lighter fluid, as in air sparging, or drainage in a field of 
increasing permeability, the gradient prevents the sides of 
the finger from propagating too far and broadening the 
finger too much. In ordinary percolation, the correlation 
length (or crossover length, ζ ) provides a measure for the 
size of the largest clusters, 

c
c

c

p p
~      for  p p

p

−ν−⎡ ⎤
ξ <⎢ ⎥

⎣ ⎦
                                     (11) 

Consequently, Eq. (10) also applies to gradient 
destabilized invasion percolation, and ζ is the size of the 

blob at the end of the finger, which corresponds to a finite 
cluster below the percolation threshold [20, 21]. 

When the displacement is unstable, and an increase of 
the Bond number enhances the instability it reduces the 
lateral width of the cluster ζ. For length scale smaller that 
ζ, the internal structure of the blobs is fractal, with a 
fractal dimensionality d = 1.82 in two dimension. Thus, 
the cluster mass distribution verifies the relationship, 

dM ≈ ζ                                                                          (12) 

And the number of occupied sites by the invading 
fluid scales as 

( )dN L /≈ ζ ζ                                                               (13) 

Then, at the scale of the whole network, the saturation 
of the invading fluid can be written as: 

o o2
N 1

S ~             S ~ ( )(B )
LL

−γ→                             (14) 

(d 1)
where  

1
− ν

γ =
ν +
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For two dimensional lattices the numerical value  
for the exponent is γ ≈ 0.47 [20]. 

We measure numerically the width of the finger 
cluster and saturation with respect to the bond number by 
simulation of 10 samples and draw the curve on a log-log 
scale which is shown in Figs. 5 and 6. From these figures 
we found the slops corresponding to width of the finger 
cluster and saturation are respectively-0.58 and -0.44 
which are consistent with theoretical predictions. 

As can be seen in Figs. 5 and 6 at high bond numbers 
the gravity force is dominant and both the width of the 
finger cluster and the saturation decreases significantly 
(see fig. 4). The implication on secondary migration,  
for example, is that the magnitude of Sor in the enormous 
rock is very low. 

If we draw saturation against bond number on a  
log-log scale in the wider range (Fig. 7), we see three 
different zones as follow, in the first part B is very small 
and there is not a strong effect and the behavior of the 
non wetting cluster is the same as in the invasion 
percolation, in the second part the gravity and the capillarity 
act simultaneously, and this regime is characterized by  
the growth of a single branch, so we see a decrease of  
the saturation by increasing the bond number and in the third 
section the gravity effect predominates and hides the 
heterogeneity and the capillary forces; the displacement is 
then purely vertical and the saturation S is equal to (1/L) 
and it becomes constant. 

In the case of secondary migration, the direction of oil 
may not always be from the bottom to the top surface,  
for example there may be a flow movement from the left 
edge toward the right. Again simulation results in this 
case shows that by increasing the bond number the finger 
width decreases and because of a lower density, it goes 
upward again. Fig. 8 shows some realisations to illustrate 
this effect. 

Then we measure the width of the finger cluster and 
saturation at different bond number by simulation of 50 
samples. The results are shown in figure 9 and 10. These 
results show that the slops correspond to the width of the 
finger   cluster  and  saturation  is  respectively  -0.51  and 
-0.44 which are consistent with theoretical predictions 
and the results of the previous cases. 

These results show that Eqs. (10) and (14) can also be 
applicable in this case. The numerical results show that in 
this case the range of bond numbers is wider 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Variation of width of finger versus bond number on a 
log-log scale for 10 samples which shows a slope of -0.58. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Variation of saturation versus bond number on a log-
log scale for 10 samples which shows a slope of -0.44. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Three zones for the saturation-bond number variations 
on a log-log scale. 
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Fig. 8 : Four realizations generated by the slow gravity destabilized displacement of a wetting fluid by a  
non wetting fluid in a quasi-two-dimensional porous medium in a lattice of size 200200 × ,  

when non wetting fluid invade from left side where (a) B=0, (b) B=-0.0001, (c) B=-0.001,(d) B=-0.01. 
 
(-0.0001 to -0.45) in comparison to the previous 
condition (-0.0001 to -0.25), therefore the effect of 
gravity is more sensible in the case of vertical movement 
of non wetting fluid with respect to its lateral movement 
and the width of finger cluster; hence, its saturation 
reaches the lowest value earlier. In Fig. 11 we show  
these differences in saturation against the bond number; 
again this can reasonably describe why we see very small 
residual oil saturation (less than 1%) at the end of 
secondary migration process. 

If we assume that for filling each site we require  
a time step, then by counting the amount of filling site  
we can predict the breakthrough for each lattice as follows: 

0~ N             ~ Sτ → τ                                                (15) 

Therefore this breakthrough time scales with the bond 
number as, 

~ B−γτ                                                                          (16) 

NUMERICAL INVESTIGATION OF THE EFFECT 
OF PORE SIZE DISTRIBUTION ON THE IPG 
DESTABILIZED PROCESS 

In this part we consider a lattice of size 200×200;  
an invasion fluid (oil) that enters from the left side of  
the lattice and displaces water (e.g. the process which 
happens in the secondary migration) on a lattice of 
different pore size distribution (such as uniform, normal 
and lognormal distributions) and study the effect of pore 
size distribution on the network properties. We assume 
that all conditions are the same and the only difference  
is in the pore size distribution, then for each pore  
size distribution we consider 50 samples and calculate the 
saturation and width of finger of invasion fluid at  
the breakthrough time in various bond numbers ranges from 
-0.0001 to -0.4 and calculate the slope of them on a  
log-log scale (Figs. 12 and 13). 

We see that for the saturation results (Fig. 12),  
the slope of the saturation versus the bond number on a

(a) 

(b) 

(c) 

(d) 
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Fig. 9: Width of finger against bond number on log-log scale 
for 50 samples when oil injected from left edge. This shows 
that the slope is equal to -0.51. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10: Saturation against bond number on log-log scale for 
50 samples when oil injected from left edge. This shows that 
the slope is equal to -0.44. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11: Comparison of range of bond number in the case of 
injection of invader fluid from bottom of lattice (a) and in the 
case of injection of invader fluid from left side of lattice (b). 

log-log scale for the uniform, normal and lognormal 
distribution is -0.4760, -0.4574 and -0.4360 respectively, 
and for the finger width results (Fig. 13) the slope of the 
width against the bond number on a log-log scale for the 
uniform, normal and lognormal distribution is  
-0.5836, -0.5557 and -0.5193 respectively.  

These results demonstrate that it is reasonable to 
assume that the distribution of the capillary pressure is 
slowly varying near the percolation threshold pc. However, 
in the case of saturation results, the pore size distribution 
does not affect the exponent observed in the power law 
scaling greatly. Moreover, the amplitude of So is very 
sensitive to the pore size distribution, implying that the 
distribution and the magnitude of the capillary forces play 
important roles in determining the displacement patterns 
and the saturation at the percolation threshold. 

In the next step we consider a composite lattice with 
pore size distribution in Fig. 14. 

Then we calculate the saturation and the finger width 
as before for 50 samples and study the behaviour of  
the system under this condition. We calculate the slope of 
the curves in log-log scale (Fig. 15) and see that this 
behaviour is different from the previous cases and it has 
an average slope of -0.3702 for the saturation and -0.4596 
for the finger width. One may notice that the decrease in 
slope of the saturation results, for example, emphasizes 
the effect of heterogeneity represented by considering  
the widest pore size distribution to be at bottom and 
narrower at the top. 
 
CONCLUSIONS 

We have described the basis of various displacement 
processes in porous media and discussed the modeling 
techniques for them. In particular, we have shown that  
for the capillary dominated flow regime invasion 
percolation is an appropriate model to describe the 
displacement process. In particular, we have shown how 
the gradient percolation along with simulation results can 
be used to incorporate the effects of gravity forces in the 
displacement modeling. Moreover, the width of the finger 
cluster on the interface of two immiscible phases and  
the saturation of the invading fluid with respect to the bond 
number are presented numerically. This result can 
reasonably describe why we see very small residual oil 
saturation (less than 1%) at the end of secondary migration 
process. Moreover, we have shown that the pore size
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Fig. 12: Comparison of saturation slop respect to bond 
number on a log-log scale for uniform (solid line (a)), normal 
(dashed line (b)) and lognormal (dashed dot line(c)) 
distributions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13: Comparison of finger width slop respect to bond 
number on a log-log scale for uniform (solid line(a)), normal 
(dashed line (b)) and lognormal (dashed dot line(c)) 
distributions. 
 
 
 
 
 
 
 
 
 
 
Fig. 14: Arrangement of the pore size distribution in a 
composite lattice. 

distribution as a measure of the system heterogeneity can 
greatly affect the flow displacement behavior. In particular, 
it affects the scale dependency of both saturation and the 

width of the finger cluster by decreasing the exponents of 
the corresponding power law scaling. This effect is 
clearer in the case where the widest pore size distribution 
is at the bottom and the narrower at the top of the system. 
As a result, this study improves our understanding of the 
slow displacement of the fluid flow under the presence of 
gravity in a geometrically complex medium. 
 
Nomenclatures 
Bo                                          Dimensionless Bond number 
d                                                              Fractal dimension 
g                                               Acceleration due to gravity 
g (r)                                    Two point correlation function 
K                                                      Absolute permeability 
kri                                                      Relative permeability 
L                                                                        Lattice size 
M                                                                    Cluster mass 
NI                        Number of sites occupied by the invader  
                                                             in spanning cluster 
p                                                      Occupancy probability 
pc                                                        Percolation threshold 
pc

∞                       Percolation threshold of infinite systems 
Pi                                                                  Phase pressure 
Pnw                                       Pressure of non wetting phase 
Pw                                               Pressure of wetting phase 
Pc                                                           Capillary pressure 
P(p)                                                       Connected fraction 
r                                                               Pore throat radius 
Si                                                              Fluid saturations 
t                                                                                   Time 
ui                                                                   Phase velocity 
Y(i)                                             y-coordinate of the ith site 
β,ν                                                          Critical exponents 
σ                                                             Interfacial tension 
∆ρ                     Density difference between the two fluids 
θ                                                                    Contact angle 
φ                                                                             Porosity 
η                                                                           Viscosity 
ε                                        Pore or grain characteristic size 
ζ                                                                      Size of blobs 
γ                                               Exponent for the saturation 
τ                                                             Breakthrough time 
ξ                                                             Correlation length 
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Fig. 15: Saturation (solid line (a)) and finger width (dashed 
line (b)) respect to bond number on a log-log scale for the 
composite lattice. 
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