
Iran. J. Chem. Chem. Eng.  Vol. 29, No. 3, 2010  
 

109 

 
 

Neural Network Meta-Modeling of  
Steam Assisted Gravity Drainage Oil Recovery Processes 

 
 

Alali, Najeh; Pishvaie, Mahmoud Reza*+; Taghikhani, Vahid 
Faculty of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran, I.R. IRAN 

 
 

ABSTRACT: Production of highly viscous tar sand bitumen using Steam Assisted Gravity 
Drainage (SAGD) with a pair of horizontal wells has advantages over conventional steam flooding. 
This paper explores the use of Artificial Neural Networks (ANNs) as an alternative to the traditional 
SAGD simulation approach. Feed forward, multi-layered neural network meta-models are trained 
through the Back-Error-Propagation (BEP) learning algorithm to provide a versatile SAGD 
forecasting and analysis framework. The constructed neural network architectures are capable  
of estimating the recovery factors of the SAGD production as an enhanced oil recovery method 
satisfactorily. Rigorous studies regarding the hybrid static-dynamic structure of the proposed 
network are conducted to avoid the over-fitting phenomena. The feed forward artificial neural 
network-based simulations are able to capture the underlying relationship between several 
parameters/operational conditions and rate of bitumen production fairly well, which proves that 
ANNs are suitable tools for SAGD simulation. 
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INTRODUCTION 
There is considerable interest in effective oil recovery 

mechanisms for heavy oil and bitumen due to the decline 
of conventional oil reservoirs and the estimated 
magnitude of these resources worldwide (approximately 
6 trillion barrels of heavy oil in place) [1, 2]. 

In order to deplete enormous amounts of immobile 
heavy oil, different alternatives have been proposed in the 
last three decades. Examples of these alternatives are 
cyclic steam stimulation (CSS), steam drive, in situ combustion, 
and Steam Assisted Gravity Drainage (SAGD) [3].  
The latter could be effective even in reservoirs containing  
 
 
 

highly viscous oil or bitumen [4] and have proven to be 
economically viable in a variety of pilot and commercial 
recovery projects [5,6]. In the SAGD process, two 
parallel horizontal wells, one above the other, are utilized 
where the top well is considered as the steam injector and 
the bottom as the oil producer. When steam is continually 
injected into the top well the oil is heated up and forms  
a steam chamber which grows upward to the surroundings 
(Fig. 1). 

In this process, heat exchange can occur by both 
conduction and convection mechanism, and also due to  
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Fig. 1: SAGD principle, (www.mcdan.com/Images/SAGDInset.jpg). 
 
 
the steam condensation. The SAGD process presents  
a significant advantage over compared to conventional 
continuous steam injection process.  In continuous steam 
injection, oil is pushed to an area where its mobility is 
low, while in the SAGD process, oil is drained with a flow 
approximately parallel to the steam chamber, arriving  
at the producer well still warm and with high mobility. 
Fig. 2 provides a visual description of the process. 

The performance of SAGD process can be significantly 
affected by the selection of the operational and geometric 
reservoir parameters [7,8], for instance, horizontal and 
vertical rock permeability, reservoir heterogeneity, oil 
reservoir thickness, and operational conditions such as, 
pre-heating policy, distance between wells, wells’ length 
and steam rate, to name a few. 

Obviously, the rigorous optimization and forecasting 
studies of SAGD processes is a complex task. The complexity 
is associated with being very time consuming, a potentially 
high number of parameters, and a nonlinear distributed 
parameter solution space. However, a major shortcoming 
of simulations based on first-principle modeling is the 
need for expert assistance any time a change is required 
in a model. Another drawback is encountering high 
computational load when conducting simulation runs 
through rigorous numerical simulators. Therefore, accurate, 
high-fidelity models are typically time-consuming and 
computationally expensive. In this context, the so-called 
metamodeling approach for analysis and optimization can 
play a very valuable role. A meta-model, response surface, 
and/or ‘fast surrogate’ model is an approximation  
of the input/output function implied by the underlying 
 

 
 

 
 
 
 
 
 
 
 
 
 
Fig. 2: Schematic diagram for the SAGD process. (SC: Steam 
Chamber). 
 
simulation model. It is usually a supplementary model 
that can be alternatively used to interpret a more detailed 
model. There are several techniques to provide a meta-model 
such as artificial neural networks. These connectionist 
models can act as a surrogate to the original rigorous 
model with relatively accurate and fast performance. 

The meta- or surrogate modeling, required by simulation 
activities is very important and provides general 
guidelines for the development of ANN-based simulation 
metamodels [9]. Such guidelines were successfully applied  
in the development of many complex systems such as; 
estimating the Manufacturing Lead Times (MLT), 
dispatching system (planning system of transport routes), 
multicommodity network and bank system with several 
cash registers [9-11]. 

Amongst the others, Queipo presented a solution 
methodology called Neural Network-based Efficient Global 
Optimization (NEGO) for optimization of the geometrical 
and operational parameters in a SAGD process [22].  
The solution methodology includes the construction of a 
‘‘fast surrogate’’ of an objective function whose evaluation 
involves the execution of a time-consuming mathematical 
model (i.e. reservoir numerical simulator) based on neural 
networks. The parameters involved are only vertical 
spacing, injection pressure, steam-injected enthalpy, and 
sub-cooling. 

In summary, the term ‘simulation meta-model’ refers 
to a simplified representation of a first-principle based 
simulation model, designed to approximate selected 
input-output mappings, whilst the term ‘surrogate model’ 
stresses on fast calculation of outputs, as required 
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essentially in intermediate computations of optimization 
and/or forecasting studies. 

In this paper, all effective factors have been studied 
and their results for the first 10 years of production  
are considered as input parameters in the neural network.  

The main objectives which are followed in this study 
are survey of parameters which are effective on primitive 
production in SAGD process, execution of sensitivity 
analysis of parameters relating to reservoir, for developing  
a meta-model neural network. All case studies are performed 
using the simulator ’STARS’ from CMG (Computer 
Modeling Group, version 2006.10). 
 
Methodology of Surrogate-based analysis and modeling 

Computational modeling is a complex and lengthy 
process that begins with the examination and a set of 
scientific observations and the formation of explanatory 
hypothesis (either in deterministic or statistical sense), 
and ends with executable computer code designed  
to confirm or disprove these hypothesis [23].  

The formalism for a conventional simulation includes 
a four-step methodology: 1) selection of system or 
control volume, 2) deriving the suitable governing 
equations, 3) selection of a solution technique to perform 
the simulation, and 4) computer coding to implement the 
algorithm of modeling/simulation. However, when the 
system is highly complex, the major computational load 
is due to step 3 which in turn is affected by step 2, i.e.; 
the formulation step. An alternative to the conventional 
and mathematical, rigorous or the so-called first-principle 
law formulation is surrogate- or meta-modeling. In other 
words, we may use black-box or grey-box neural network 
meta-modelers to surrogate the rigorous formulation 
instead. Obviously, the scheme differs somehow in 
formulation and model selection.  

Preliminary study and sensitivity analysis of rigorous 
modeling of the desired system, i.e., SAGD process, 
construction of the surrogate model, i.e., the neural net 
meta-modeler structure, and training and/or model 
validation are three steps for the methodology of surrogated 
based modeling selected in this work. 
 
The SAGD process rigorous model simulation 
Base case 

Specification of one of the reservoirs of Alberta State 
of Canada has been considered as a base case. Operational  
 

Table 1: Base case properties. 

Variables Values 

Oil Gravity,  APIo 10.57  

Reservoir coordinate in the X 
direction, m 120  

Reservoir coordinate in the Y 
direction, m 850  

Reservoir thickness, m 50  

Sgc, % 5  

Swi, % 20 

Sor, % 15  

kx, md 3400  

ky, md 800  

A, m2 102000 

Pi, psi 2100 

h, m 50 

rw, m 0.0875 

Lp, m 850 

Reservoir type Heavy Oil Conventional 
Reservoir 

S 0 

 
characteristics and well completion are changing in a way 
that one can create several models, obtain their results 
and compare them using a simulator. The base case  
is composed of a cube reservoir by the area of 10200 m2 
and 50 m thickness. Other specifications of the reservoir, 
liquid and rock are given in Table 1. The schematic plan 
of the base case is also shown in Fig. 3. Two horizontal 
wells by length of 850 m and radius of 8.6 cm are drilled 
in 235 and 247 m depths. From the upper well, steam  
is injected and from the lower one, oil is produced. 

The curves of PVT, permeability ratio and other 
properties such as water volume factor (Bw), density and 
viscosity of water phase, density, viscosity and gas 
solution for oil phase and also permeability ratio of water 
and oil phases have been provided and introduced to the 
simulator. 
 
STARS simulator 

STARS is a module belonging to the CMG software 
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Table 2: Different gridding properties. 

Gridding Type Block Number Local Grid Refinement (LGR) 

Non Uniform Fine Grid 23250 No 

Non Uniform Fine-Hybrid Grid 23250 Yes 

Non Uniform Medium-Hybrid Grid 7250 Yes 

Uniform Coarse Grid 750 No 

Uniform Fine Grid 21700 No 

Uniform Fine-Hybrid Grid 21700 Yes 

Uniform Medium-Hybrid Grid 7500 Yes 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Base case model (cross view). 

 
simulators which simulates the operations regarding 
steam injection, thermal processes and complicated 
processes of enhanced oil recovery. STARS can be used 
for different kinds of liquid properties (PVT region),  
rock type and curves of permeability ratio related to each 
region in a reservoir.  

Regardless of size and complexity of the reservoir 
under the study, STARS is a suitable tools for performing 
studies on the reservoir.  

 
Optimal gridding 

Prior to running several simulations, it is necessary to 
select the proper block sizes of problem domain. Seven 
cases with different gridding schemes were considered to 
select the model accuracy and computational load.  
The explanations of these models including the number of 
grid blocks are given in Table 2. 

When Peaceman [24] brought his method about the 
relation among well and reservoir grids, he used uniform  
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Effect of different gridings over oil production rate. 

 
gridding. But as we know the use of non uniform 
gridding can increase the accuracy of calculations without 
increasing the period of program execution. Further,  
in simulation of some events (such as conning) and  
in special conditions in reservoirs (such as layered ones), 
the use of non uniform gridding is vital and necessary  
to preserve the stability and accuracy of simulation.  

In Fig. 4, the production oil rate during 10 years of 
simulation is drawn regarding the number of gridding.  

As can be observed from Fig. 4, by increasing the 
number of grids the rate of daily production in all cases 
except uniform fine grid and uniform fine hybrid in the 
first 300 days had fluctuations and it indicates the 
incompatibility of the model with gridding system. 
Between these two gridding types, uniform fine hybrid 
grid is preferred. This is the case in simulation of 
processes like SAGD that wells are horizontally drilled 
and further, by steam injection in a well, the pressure 
gradient and high temperature will be set up around it. 
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The number of grids in this model is 21700 (= 62×14×25) 
and for the grids where well is completed, are refined by 
local grid refinement method. Each grid is divided in 
radial type to two parts, in angular type to 4 parts and in 
axial type to one part. 

The reservoir studied by STARS simulator is a model 
composed from many patterns which have been 
previously developed in the field. Therefore, boundary 
condition requirement for simulation of each pattern is  
no flow. In simulation of the flow inside the well, the 
Discretized Wellbore (DW) technique which can model 
the pressure and temperature drop inside the well has 
been considered. It makes the results reliable and acceptable. 
 
Preheating  

Effective initial heating of the cold oil is important for 
the formation of the steam chamber in gravity drainage 
processes [25]. To enhance the slow process of SAGD,  
an early-time preheating is performed in which steam 
may be circulated in both wells.  

The results of the simulations show that it is possible 
to improve the initial amount of production of the 
reservoir through pre-heating step. Generally, cyclic 
vapor injection has yielded better results compared to 
vapor circulation in the wells.  
 
Parametric Study 

The methodology to set up a meta- or surrogate model 
initiates with identification of effective and key 
parameters of the process in a reduced manner.  
By reduced manner, we mean finding the minimum set of 
inputs and/or parameters which have the maximum 
effects on major outputs.  

In this section we intend to study the evolving 
parameters and their effects on the oil production using 
the SAGD method. The parameters have been categorized 
into 4 groups, leading to totally 15 items enumerated as below: 

Group 1 (reservoir parameters):  
1- kh / kv ratio, 
2- Initial pressure (pi), 
3- Thickness (h) and 
4- Drainage area (A) 
Group 2 (fluid parameters): 
1- API gravity 
2- Oil viscosity in the in initial Temperature of the 

reservoir (μoi),  

3- Injecting vapor temperature (Ts),  
4- Steam injection rate (qinj) and 
5- Steam quality (x) 
Group 3 (reservoir rock-fluid parameters): 
1- Critical Gas Saturation (Sgc) and 
2- Residual oil saturation (Sor) 
Group 4 (well parameters): 
1- distance between injecting and producing wells (dip), 
2- well length (Lp), 
3- Well radius (rw), 
4- Ratio of injecting well length to producing well  

(Lp / Linj) and 
5- Skin factor (s) 
 
Each of above items was varied and deviated from the 

base case value, while the others remained constant at 
their original base case values. Totally 277 simulation 
sessions were run to study the relative effects of 
parameters on oil rate and its cumulative production 
(recovery factor).  For all the scenarios, the time zero  
is considered when the preheating operation has been 
terminated. In other words, it was done to avoid the 
consideration of inherent time delay (due to preheating) 
prior to starting principal SAGD process. Amongst them, 
the most effective parameter was steam injection rate and 
the least one, was the API gravity parameter. However, 
due to space limit, only the corresponding graphs of 
steam injection rate are depicted in Figs. 5 and 6. 
 
Neural network meta-modeler 

Neural networks are composed of simple elements 
operating in parallel. These elements are inspired by 
biological nervous systems. Neural networks have been 
trained to perform complex functions in various fields, 
including pattern recognition, identification, classification, 
speech, vision, and control systems. One can train  
a neural network to perform a particular function by 
adjusting the values of the connections (weights) between 
elements. A trained network can perform the intended 
mapping of input space to output space in almost 
instantaneously fashion. Therefore, it can act as a  
meta-modeler instead of running a time-consuming and 
rigorous simulator or modeler. The neuron model and the 
architecture of a neural network describe how a network 
transforms its input into an output. This transformation 
can be viewed as a computation task. 
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Fig. 5: Influence of Steam Injection Rate on Oil Rate via 
SAGD. 
 

To define the problem (SAGD performance) in the 
context of neuro-computing, a set of input vectors and  
a set of corresponding target vectors (the correct output 
vectors for each of the input vectors) should be arranged 
into an appropriate database. However, the main 
objective is such that the trained net-modeler should be 
capable of predicting next month recovery factor for any 
probable combination of early-mentioned parameters. 
This has been done instead of running a professional, 
complex and time-consuming simulator such as STARS. 
 
Neural network topology 

There are two basic types of input vectors: those that 
occur concurrently (at the same time or in no particular 
time sequence), and those that occur sequentially in time. 
For concurrent vectors, the order is not important, 
whereas for sequential vectors, the order in which the 
vectors appear is important. Concurrent inputs are 
appropriate for static networks while the sequential inputs 
are suitable for pure dynamic networks. However,  
the proposed network is specially designed in a mixed 
static-dynamic network. Therefore, the input data structure 
comprises of two parts; 16 parameters of well, reservoir 
and fluid properties, all taking part as factors or affecting 
parameters and three sequential producing well recovery 
factors of last three months, representing the dynamic 
feature of the SAGD process. This leads totally to  
a 19-dimensional input vector. The corresponding target vector 
(outputs) includes the current time instance of recovering 
factor. In summary, the proposed network maps the  
19-dimensional input (16 parameters and the three past  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Influence of Steam Injection Rate on Recovery Factor 
via SAGD. 
 
values of recovery factors) into a 1-dimensional output 
(current RF) space, as below: 

Input vector: APIo , qinj, Ts, x, μoi, A, pi, kh / kv, h, Sgc, 
Sor, dip, Lp / Linj, Lp, rw, s, RFk-1, RFk-2 and RFk-3 

Output vector: RFk 
 
Data preparation for training  

Back-propagation is the generalization of the 
Widrow-Hoff learning rule to multiple-layer networks 
and nonlinear differentiable transfer functions. Input 
vectors and the corresponding target vectors are used  
to train a network until it can approximate a function, 
associate input vectors with specific output vectors,  
or classify input vectors in an appropriate way. Networks 
with biases, a sigmoid layer, and a linear output layer are 
capable of approximating any function with a finite 
number of discontinuities. Standard back-propagation is  
a gradient descent algorithm, as is the Widrow-Hoff 
learning rule, in which the network weights are moved 
along the negative of the gradient of the performance 
function. The term back-propagation refers to the manner 
in which the gradient is computed for nonlinear 
multilayer networks. 

Neural network structure includes 19 inputs,  
35 neurons in hidden layer and one-element output. It should 
be remarked that the selection of 35 neurons is primitive 
and it will be reduced systematically to 6 neurons, 
eventually. Activation function in hidden layer neurons  
is tansig and in output layer is purelin and finally it applies 
Error Back Propagation algorithm and training method of 
Levenberg-Marquardt.  
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Training 
Once the network weights and biases are initialized, 

the network is ready for training. During training the 
weights and biases of the network are iteratively adjusted 
to minimize the network performance function.  

To train the proposed neural network, we used 
MATLAB software (NNET toolbox) and after determination 
of topology as recommended, we prepared the training 
vector pairs into two matrixes (input matrix and target 
matrix). Further, we should determine some parameters 
related to training algorithm.  
 
Improving Generalization  

One of the problems that occur during neural network 
training is called over-fitting. The error on the training set 
is driven to a very small value, but when new data  
is presented to the network the error is large. The network 
has memorized the training examples, but it has not 
learned to generalize to new situations. 

One method for improving network generalization is 
to use a network that is just large enough to provide  
an adequate fit. The larger network we use, the more 
complex the functions the network can create. If a small 
enough network is used, it will not have enough power  
to over-fit the data. Unfortunately, it is difficult to know 
beforehand how large a network should be for a specific 
application. However, there are two other methods for 
improving generalization that are implemented in  
NNet Toolbox™ software: early stopping and regularization. 

In the early stopping algorithm (the default technique 
in NNet Toolbox) the available data is divided into three 
subsets. The first subset is the training set, which is used 
for computing the gradient and updating the network 
weights and biases. The second subset is the validation set. 
The error on the validation set is monitored during  
the training process. The validation error normally 
decreases during the initial phase of training, as does the 
training set error. However, when the network begins to 
over-fit the data, the error on the validation set typically 
begins to rise. When the validation error increases for  
a specified number of iterations (epochs), the training  
is stopped.  

The test set error is not used during training, but  
it is used to compare different models. If the error in the test 
set reaches a minimum at a significantly different 
iteration number than the validation set error, this might 

indicate a poor division of the data set. However, 
according to the hybrid structure (static/dynamic) of the 
proposed network, it is very difficult to find an 
appropriate dividing criterion to separate the training, 
validation and test data set. Therefore, this technique was 
put aside in this work. 

Another method for improving generalization  
is called regularization. This involves modifying the 
performance function, which is normally chosen to be the 
sum of squares of the network errors on the training set.  

The typical performance function used for training 
feed-forward neural networks is the mean sum of squares 
of the network errors: 

( ) ( )
N N

2 2
i i i

i 1 i 1

1 1F mse e t a
N N= =

= = = −∑ ∑                        (1) 

It is possible to improve generalization if the 
performance function is modified by adding a term that 
consists of the mean of the sum of squares of the network 
weights and biases: 

( )msereg mse 1 msw= γ + − γ  

where γ is the performance ratio, and 

( )
n

2
i

i 1

1msw w
n =

= ∑                                                         (2) 

Using this performance function causes the network 
to have smaller weights and biases, and this forces the 
network response to be smoother and less likely to over-fit. 

The problem with regularization is that it is difficult 
to determine the optimum value for the performance ratio 
parameter. If this parameter is assigned too large,  
we might get over-fitting. If the ratio is too small,  
the network does not adequately fit the training data. 
Therefore, it is desirable to determine the optimal regularization 
parameters in an automated fashion. One approach to this 
process is the Bayesian framework of MacKay [26].  
In this framework, the weights and biases of the network 
are assumed to be random variables with specified 
distributions. The regularization parameters are related to 
the unknown variances associated with these distributions. 
We can then estimate these parameters using statistical 
techniques. A detailed discussion of the use of Bayesian 
regularization, in combination with Levenberg-Marquardt 
training, can be found in [27]. 
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One feature of this algorithm is that it provides  
a measure of how many network parameters (weights and 
biases) are being effectively used by the network.  

The algorithm generally works best when the network 
inputs and targets are scaled so that they fall 
approximately in the range [-1, 1]. This is the case for the 
proposed network here. 

 
DISCUSSION 

In this research we produced and simulated the data of 
277 injecting and producing pair well by CMG software 
and applied these results as input data to the neural 
network. The neural network structure and the way  
we allocated input and target data are mentioned in previous 
parts. In this part we are involved with analysis and 
optimization of neural network parameters. The neural 
network should not be affected by common errors of 
training like generalization and memorization.  

In this research, first a neural network with 19 inputs 
and 35 neurons in hidden layer and 1 neuron in output 
layer is considered. Error threshold and epochs number 
are determined 0.001 and 100 times, respectively. 
Obtained results confirmed that neural network was well 
trained and in test stage provided very accurate results. 
Figs. 7 to 9 show neural network results. 

Fig. 7 is a result of neural network training process.  
It shows that the training is done with a good 
performance by comparison between train and validation 
data which are divided before by MATLAB. According 
to performance result (0.00121388) and predefined value 
of error tolerance (as 0.001), the neural network  
is definitely trained well.   

Fig. 8 is a comparison diagram of neural network 
output and real data related to test cases, where the NN 
checked for test data which is divided before using 
MATLAB (55 Test cases). This Figure compares the 
result created by NN (Outputs) and the real data were 
obtained by CMG (Targets) indicating a good agreement.  

Fig. 9 is a comparison of recovery factor obtained 
from neural network and real one obtained from CMG for 
one of the 55 test cases. The case shown here corresponds 
to the results obtained by NN for 120 months (10 years) 
and to those obtained by CMG. The results of other cases 
are similar.  

By verifying neural network weights, it is found that 
the 35-neuron network had only considered some  
 

 
 
 
 
 
 
 
 
 
 

 
 
Fig. 7: Neural network training diagram with 35 neurons in 
hidden layer. 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 8: Comparison diagram of neural network output and real data 
related to test cases. 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 9: Comparison of recovery factor obtained from neural 
network and real one obtained from CMG for one of the  
55 test cases. 
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Table 3: The effect of node numbers in empowering the generalization. 

Number of Nodes Number of Parameters Num. of effective Effective Parameters % of efficiency 

5 108 83 76.8 

6 129 123 95.3 

7 150 124 82.6 

8 171 144 84.2 

9 192 140 72.9 

10 213 168 78.8 

11 234 170 72.5 

12 255 124 48.6 

13 276 113 40.9 

14 297 224 75.4 

15 318 149 46.8 

16 339 298 87.9 

17 360 213 59.1 

18 381 224 58.8 

19 402 194 48.2 

20 423 227 53.6 

21 444 93 20.9 

22 465 93 20.0 

23 486 103 21.2 

24 507 83 16.4 

25 528 102 19.3 

26 549 106 19.3 

27 570 252 44.2 

28 591 100 16.9 

29 612 95 15.5 

30 633 322 50.8 

31 654 88 13.4 

32 675 114 16.8 

33 696 103 14.8 

34 717 325 45.3 

35 738 147 19.9 

 
particular inputs. In other words, the networks may be 
involved in memorization error due to overtraining.  
By reduction of neuron number and also, the epoch number 
this problem can be solved. Therefore, the results led us 
toward the study of generalization power and over-fitting 
mirage. The results of training experiments, equipped by 
Bayesian regularization for several candidates of hidden 
layer nodes are given in Table 3. As it is clear, there is  
an optimum number of hidden layer (16 neurons in the 
hidden layer) at which the most generalization power 

occurs. It should be remarked that the mse value for all 
results was around 0.001, approximately.   
 
CONCLUSIONS 

In the present work, a new meta- and surrogated 
model has been designed through a delegated artificial 
neural network. The sensitivity analysis indicates that 
SAGD meta-modeler is applicable to the most of heavy 
oil reservoirs. In the proposed scheme, a new hybrid 
(static/dynamic) structure of neural network has been 
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used and also the optimal selection of hidden layer 
neurons has been selected such that the over-fitting has 
been avoided. The major work was focused on both 
designing and training of the proposed NNet-modeler. 
The training and validation of proposed neural network 
are deliberately assessed to avoid the common errors like 
generalization, over-fitting and memorization. 

In this work, for designing a neural network based 
meta-modeler for SAGD processes, some general guidelines 
have been provided. 

As a future work, the proposed scheme can be 
extended to cope with transient behavior of SAGD processes.  
 
Nomenclature 

Bw                                     Water volume factor, Rbbl/STB 
Swi                                              Initial water saturation, % 
kx                       Reservoir permeability in x direction, md 
ky                       Reservoir permeability in y direction, md 
kz                       Reservoir permeability in z direction, md 
dip                                         Injector-Producer distance, m 
S                                                                         Skin factor 
Sor                                               Residual oil saturation, % 
Sgc                                               Critical gas saturation, % 
kh                                            Horizontal permeability, md 
kv                                                Vertical permeability, md 
Linj                                                 Injection well length, m 
Lp                                               Production well length, m 
A                                                             Drainage area, m2 
h                                                      Reservoir thickness, m 
μoi                           Viscosity in the initial temperature, cp 
Ts                                          The temperature of vapor, °C 
pi                                                           Initial pressure, psi 
qinj                                The rate of injecting vapor, m3/day 
x                                                                    Steam quality 
rw                                                                  Well radius, m 
I                                                                      Inputs vector 
T                                                                  Outputs vector 
D                                                 Unnormalized initial data 
E                                                        Neural network error 

 
APPENDIX - TEMPERATURE DEPENDENCY OF 
VISCOSITY AND CONDUCTIVITY 
Viscosity 
Water Phase 

Water phase viscosity tends to be relatively constant 
at 1 cp, and decreases as far as 0.1 cp at 300°C. The main 

purpose of allowing entry of water viscosity data is  
to account for the various brine concentrations encountered 
in different reservoirs. 

The STARS model has the following data entry options: 
1. Use internal table of μw versus T, with a possible 

dependence on salt concentration 
which can be significant. 
2. Use the correlation μw = a • exp (b/T), where T is 

in absolute degrees. 
3. Enter directly a table of μw versus T.  

 
Gas Phase 

Gas phase viscosities usually are much smaller than 
liquid phase values, and hence will tend to dominate the 
flow if gas phase is mobile. As a consequence, pressure 
gradients may be high when gas is immobile, but will 
certainly be low when gas is flowing. Gas phase 
viscosities have values around 0.01 cp. 

The STARS model has the following gas viscosity 
options: 

1. Correlation 
μg = 0.0136 +3.8  *10^(-5)* T  
T in deg C; μg depends only on temperature, and not 

on composition or p. This 
gives μg = 0.014 cp at  20°C  and  μg = 0.025  at  

300°C. 
This option is very cheap to use and is very often 

quite sufficient, for the reason 
that the compositional effects on μg are small.  
2. Correlation 
μgi = ai * T^bi  
(T in absolute degrees) for each component.  

The phase viscosity is  

c

c

n

i gi
i 1

g n

i
i 1

w

w

=

=

μ

μ =
∑

∑
 

Where: 

i i iw y M=  

because viscosities μgi for different components are 
quite similar, and the T dependence is not strong, the first 
option mentioned above is often sufficient. 

3. Same as option (2), but with an additional 
correction to μg for high pressure. 
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Oil Phase 
In many steam-injection processes the μo-versus-T 

function will contain much of the nonlinearity in the flow 
equations. This is because μo can decrease by several 
orders of magnitude over only a modest temperature 
increase. Therefore, it is crucial that the temperature 
dependence of μo be represented adequately. In addition, 
the effect of soluble gas components on μo can be 
significant, and so must be accounted for. 

The oil phase viscosity is obtained by a logarithmic 
mixing rule:  

( ) ( )
cn

o oi
i 1

ln xi ln
=

μ = μ∑  

For liquids the component value μoi can be measured 
directly or estimated from correlations or tables. 
However, for a soluble gas such as methane, a measured 
value for the liquid phase may be difficult to find. 

In this case, as was the case for oil phase density 
calculations, μoi must be regarded as the contribution of 
the soluble gas toward the viscosity of the liquid mixture.  

Figure below shows that plotting ln(μo) versus mole 
fraction for various values of gas content will yield a 
value for the gas component μo2 by extrapolating x2=1. 

Example: Suppose a dead oil component has  
a viscosity of μo1=1000 cp. When some soluble gas  
is added and mixed thoroughly, the live oil viscosity  
is found to be μo=300 cp, and the mole fraction  
is calculated to be x2=0.20. The equation for μo2 is 

ln(300) = 0.80ln(1000) + 0.20 ln (μo2)  

So: 

ln(μo2) = 0.1776 and μo2 = 1.19cp  

In the case of a soluble gas, μo2 is the viscosity of  
a hypothetical liquid composed of 100% solution gas. 
Note that μo2 is NOT the viscosity of solution gas in the 
gas phase. Note also that the above sample calculation 
must be done at other temperatures, in order to obtain the 
dependence of μo2 on T. 

The component values μoi may be specified using one 
of the following two options. 

1. Correlation μoi = ai . exp (bi/T), where T is in 
absolute degrees. 

Coefficients can be calculated from two points on the 
curve. For example, a heavy oil component may have 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A1: Calculation of liquid viscosity for solution gas component. 
 

μoi = 10^4 cp at 20°C(= 293K) 
μoi = 10cp at 300°C(= 573K)  
Just solve 
10^4 = ai . exp(bi / 293) 
10 = ai . exp(bi / 573) 
for ai and bi, which are  

bi = =−
−

573
1

293
1

4 )10ln()10ln(
4141.9 k 

ai= 10^4 / exp(bi / 293)= 7.256* 10^3 cp 
Check at the other point: 
At T = 300 C, μoi = ai • exp (bii/573) = 1.0 cp. 
2. Enter directly a table of μoi versus T. Interpolation 

between entries is done using the correlation described in 
option (1) above. 
 
Nonlinear Viscosity Mixing 

For situations where the normal mixing rule for phase 
viscosities does not appear adequate, an approach based 
on a nonlinear mixing rule for a key component can be 
employed. 

Basically, the linear logarithmic mixing rule 

i i
i

ln x lnμ = μ∑  

is replaced by a nonlinear function 
xa →f(xa )   
for one key component “a”. The requirement that the 
pseudo-composition still to 1 yields a condition on the 
normalizing factor N: 

( )a i
i a

f x N x 1
≠

+ =∑ ( )a

a

1 f x
N

1 x
−

⇒ =
−

 

Solution gas mole fraction (x2) 

0                                                                        1 

ln(μol)
 
 
 
 
 

 

ln(μo) 
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so that the modified logarithmic mixing rule becomes  

( ) ( )a
a a i i

a x a

1 f x
ln f x ln x ln

1 x ≠

−
μ = μ + μ

− ∑  

If f(xa) is linear then this form reduces to the original 
mixing rule. The function f(xa) can in principle be quite 
general such that the nonlinear interval can be in any 
region between xa = 0.0 and xa = 1.0. 

Nonlinear mixing function for key component "a" 
illustrating the range of values (between xal and xau) over 
which the nonlinear function is assumed to apply and the 
method by which the function is input into the simulator. 

Fig. A2 shows the general form of this function and 
illustrates that outside the specified range, a linear 
function is assumed. This figure also illustrates the 
manner in which the nonlinear mixing function is entered 
- namely that the values of this function over 10 indicates 
equally spaced intervals between xal and xau. 

 
Thermal conductivity: 

Thermal conductivity determines the flow term ΚΔT 
due to diffusion of energy from a region of high 
temperature to low temperature. The only other way for 
energy to flow in situ is by convection. In field-scale 
steam problems convection usually dominates conduction, at 
least in the direction of flow. In field-scale combustion, 
the temperature profile at the fire front can be determined 
largely by conduction, but this temperature profile is almost 
never resolved because the grid blocks used are too large. 
For these reasons, conduction is rarely a major 
mechanism in field-scale problems. Conduction can play 
a significant role in both steam and combustion at the 
laboratory scale, since the length scale is much smaller 
than in the field. 

The following are options for calculating an overall 
thermal conductivity from phase values. In each the 
porosity is fluid porosity ϕf. 
 
Linear Mixing 

Thermal conductivities are weighted by volume 

κ =ϕ*[Sw κw + So κo + Sg κg ]+(1−ϕ)* κ r  
 
Nonlinear Mixing 

The thermal conductivities are weighted using the 
correlation of Anand et al. The liquid-rock mixed value is: 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. A2: General functionality of viscosity. 
 

b
L r Lk k a− = ×  

where 
( ) ( )L o o w w o wk S k S k S S= + +  

r La k k=  

10 10b 0.28 0.757 log 0.075 log a= − × ϕ− ×  
The gas-rock mixed value is: 

d
g r gk k c− = ×  

Where:  

r gc k k=  

10 10d 0.28 0.757 log 0.057 log c= − × ϕ− ×  
The gas-liquid-rock mixed value is:  

( )g L r g r L rk 1 e k e k− − − −= − × − ×  

Where: 

w oe S S= +  
 
Temperature Dependence 

This modification of Somerton et al accounts for the 
observed change in thermal conductivity as temperature 
is increased. In the STARS model this modification may 
be done after the mixed liquid-gas-rock value has been 
calculated. The unit of κ is J/m-day-K. 

( ) ( )5
rk a 1.7524 10 T T a 119616 b c−= − × − × − × ×  

Where:  

g L ra k − −=  
0.64b a−=  

ec a d 110644.8= × +  
3d 1.8 10 T−= × ×  

where T is in K, and: 
6e 3.6784 10 a−= − × ×  

xal                   xan                    1.0
           xa 

Key component mole fraction (xa)

ln μ

1.0 
 
  
 
fn 

 

 
fl F(

x a
) 
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