Effect of WO3 Nanoparticles on Congo Red and Rhodamine B Photo Degradation

Document Type: Research Article

Authors

1 Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998 Tehran, I.R. IRAN

2 Department of Chemistry, Faculty of Science, Tarbiat Modares University (TMU), P.O. Box 14115-336 Tehran, I.R. IRAN

Abstract

Tungsten trioxide nanoparticles with two different sizes (average particle sizes about 50 and 80 nm) were prepared by the spray pyrolysis method. Photo degradation of Congo Red (azo dye) showed that photo catalytic property of the as-prepared WO3 nanoparticles with average size about 80 nm is higher than the sample with average size about 50 nm. Photo degradation of Rhodamine B (cationic triarylmethane dye) showed that photo catalytic property of the as-prepared WO3 nanoparticles with average size about 50 nm is higher than the sample with average size about 80 nm. The samples were characterized with X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), EDX analysis and UV-visible spectrum. Different interactions between dyes and the photo catalyst surface, probably causes the inverse behavior of WO3 nanoparticles with two different sizes in Congo Red and Rhodamine B photo degradation reactions.

Keywords

Main Subjects


[1] Mills A., Lee S.K., A Web-Based Overview of Semiconductor Photochemistry-Based Current Commercial Applications, J. Photochem. Photobiol. A: Chem., 152, p. 233 (2002).

[2] Hoffmann M.R., Martin S.T., Choi W., Behnemann D.W., Environmental Applications of Semiconductor Photocatalysis, Chem. Rev., 95, p. 69 (1995).

[3] Bellac D.L., Azens A., Granqvist C.G., Angular Selective Transmittance Through Electrochromic Tungsten Oxide Films Made by Oblique Angle Sputtering, Appl. Phys. Lett., 66, p. 1715 (1995).

[4] Jelle B.P., Hagen G., Performance of an Electrochromic Window Based on Polyaniline, Prussian Blue and Tungsten Oxide, Sol. Energy Mater. Sol. Cells, 58, p. 277 (1999).

[5] Turyan I., Krasovec U.O., Orel B., Saraidorov T., Reisfeld R., Mandler D., Writing-Reading-Erasing on Tungsten Oxide Films Using the Scanning ElectrochemicalMicroscope, Adv. Mater., 12, p. 330 (2000).

[6] Chaudhari G.N., Bende A.M., Bodade A.B., Patil S.S., Sapkal V.S., Structural and Gas Sensing Properties
of Nanocrystalline TiO2:WO3-Based Hydrogen Sensors, Sens. Actuators B, 115, p. 297 (2006).

[7] Morandi S., Ghiotti G., Chiorino A., Bonelli B., Comini E., Sberveglieri G., MoO3-WO3 Mixed Oxide Powder and Thin Films for Gas Sensing Devices: A Spectroscopic Characterisation, Sens. Actuators B, 28, p. 111 (2005).

[8] Guidi V., Blo M., Butturi M.A., Carotta M.C., Galliera S., Giberti A., Malagù C., Martinelli G., Piga M., Sacerdoti M., Vendemiati B., Aqueous and Alcoholic Syntheses of Tungsten Trioxide Powders for NO2 detection, Sens. Actuators B, 100, p. 277 (2004).

[9] Brescacin E., Basato M., Tondello E., Amorphous WO3 Films via Chemical Vapor Deposition from Metallorganic Precursors Containing Phosphorus Dopant, Chem. Mater., 11, p. 314 (1999).

[10] Yu Z.R., Jia X.D., Du J.H., Zhang J.Y., Electrochromic WO3 Films Prepared by a New Electrodeposition Method, Sol. Energy Mater. Sol. Cells, 64, p. 55 (2000).

[11] Aliev A.E., Shin H.W., Nanostructured Materials for Electrochromic Devices, Solid State Ion., 154-155, p. 425 (2002).

[12] Badilescu S., Ashrit P.V., Study of Sol-Gel Prepared Nanostructured WO3 Thin Films and Composites for Electrochromic Applications, Solid State Ion., 158, p. 187 (2003).

[13] Ozkan E., Lee S., Liu P., Tracy C.E., Tepehan F.Z., Pitts J.R., Deb S.K., Electrochromic and Optical Properties of Mesoporous Tungsten Oxide Films, Solid State Ion., 149, p. 139 (2002).

[14] Tsuchiya H., Macak J.M., Sieber I., Taveira L., Ghicov A., Sirotna K., Schmuki P., Self-Organized Porous WO3 Formed in NaF Electrolytes, Electrochem. Commun., 7, p. 295 (2005).

[15] Veith G.M., Lupini A.R., Pennycook S.J., Villa A., Prati L., Dudney N.J., Magnetron Sputtering of Gold Nanoparticles onto WO3 and Activated Carbon, Catal. Today, 122, p. 248 (2007).

[16] Lachheb H., Puzenat E., Houas A., Ksibi M., Elimame Elaloui, Guillard C., Herrmann J., Photocatalytic Degradation of Various Types of Dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in Water by UV-Irradiated Titania, Photocatalytic Degradation of Various Types of Dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in Water by UV-Irradiated Titania, Appl. Catal. B: Environ., 39, p. 75 (2002).

[17] Fernandez J., Kiwi M., Lizama C., Freer J., Baeza J., Mansilla H.D., Factorial Experimental Design of Orange II Photocatalytic Discolouration, J. Photochem. Photobiol. A, 151, p. 213 (2002).

[18] Ma H., Wang M., Yang R., Wang W., Zhao J., Shen Z., Yao S., Radiation Degradation of Congo Red in Aqueous Solution, Chemosphere, 68, p. 1098 (2007).

[19] Akyol A., Bayramoglu M., The Degradation of an Azo Dye in a Batch Slurry Photocatalytic Reactor, Chem. Eng. Proc., 47, p. 2150 (2008).

[20] Alaei M., Rashidi A.M., Mahjoub A., Two Suitable Methods for the Preparation of Inorganic Fullerene-Like (IF) WS2 Nanoparticles, Iran. J. Chem. Chem. Eng. (IJCCE), 50, p. 91 (2009).

[21] Sharbatdaran M., Novinrooz A., Noorkojouri H., Preparation and Characterization of WO3 Electrochromic Films Obtained by the Sol - Gel Process, Iran. J. Chem. Chem. Eng., 38, p. 25 (2006).