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ABSTRACT: Finding repetitive subsequences in genome is a challengeable problem in 

bioinformatics research area. A lot of approaches have been proposed to solve the problem, which 

could be divided to library base and de novo methods. The library base methods use predetermined 

repetitive genome’s subsequences, where library-less methods attempt to discover repetitive 

subsequences by analytical approaches. In this article we propose novel de novo methodology 

which stands on theory of pattern recognition’s science. Our methodology by using Support Vector 

Machine (SVM) classification and clustering methods could extract exact and Solo  

LTR-retrotransposons. This methodology issued to show complexity efficiency and applicability  

of the pattern recognition theories in bioinformatics and biomathematics research areas.  

We demonstrate applicability of our methodology by comparing its results with other well-known  

de novo method. Both applications return classes of discovered repetitive subsequences, were their 

results when had applied on show more that 90 percents similarities. 
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INTRODUCTION 

Transposable Elements (TEs) are genetic elements 

that can transpose from one location to another within  

the genome. Retrotransposons are a major component of 

eukaryotic genomes [2]. For example, at least 40 percent 

of the human genome is composed of retrotransposons; 

this emerges to criticality of having efficient and reliable 

methods for discovering these components. These 

elements classified into two categories; the first is 

retroelements, which are transposed through the reverse 

transcription of an RNA template, and other one is DNA 

transposons, which are transposed through a classical 

DNA ”cut-and-paste” transposition model. These categories 

divide to some classes where each class has specified  

 

 

 

properties. One of the DNA transposons classes is  

LTR Retrotransposons. LTR-Retrotransposons have  

a unique structural feature. They compound of two direct 

Long Terminal Repeats (LTRs) that range from -100 bp 

to over 5 kb in size. The LTRs flank the internal coding 

region. Most of the proposed methods for annotating TEs 

in whole genome are based on homology searching 

against predetermined TEs that stored in databases.  

One of these methods is LTR-STRUC [3] which is common 

application. LTR-STRUC searches for finding significant 

matches between genes against the databases entries.  

This methods disability for recognizing new TE and also 

the concept of finding match which backs to theory of  
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sequence alignment and its associated time complexity, 

attracted interests to de novo methods. Some de novo 

methods have been introduced for automating repeat 

elements in a genome [4]. RepeatScout [5], PILER [6] 

and a combinatorial method [7] are well-known methods 

which attempted to identify repeat elements based on 

their copy numbers in a genome, thus facilitating 

identification of general repeat elements had done. Many 

TEs indeed appear high copies in the host genome 

because of their transposition activity. But some TEs 

families have low copy numbers in some genomes.  

For example many low copy repeats in mammalian genomes 

are induced by segmental duplications. Pevzner [1] 

proposed an algorithm which solved the problem as  

kind of linguistic problems. Solution divided the problem 

into three separate small problems. The first problem  

is discovering exact matched subsequences; the second 

focused to clustering determined subsequences and 

finally, the third problem is discovering similar -Not 

exact matched- subsequences. We propose a 

methodology that uses three approaches regarding to [1] 

division. Our methodology composed of suffix tree data 

structure and one of the powerful and practical machine 

learning approaches in order to tackle the small problems 

to solve the biggest one. We apply two well known methods 

from pattern recognition area based on Support Vector 

Machines (SVM); Support Vector Clustering (SVC) and 

Support Vector Machines Classifiers (CVMC) which introduced 

by Vapnik [8, 9]. The methods introduced in order to increase 

accuracy and moreover reducing running time complexity 

for inferencing information from specified patterns. 

 

EXPERIMENTAL  SECTION 

As mentioned [1] approach consist of three steps and 

we develop our methodology based on the steps’ 

definition. Following we describe our solution for each 

step respectively. Before illustrating the proposed 

solutions, following, short overviews on SVC and SVMC 

are presented. 

 

Preliminaries, A short overview on SVC and SVMC 

Support Vector Machines (SVM) as a class of 

statistical machine learning methods, try to reduce  

the structural risk principle in opposite of empirical risk 

minimization. This feature of SVM equips it with strong 

potential to apply on wide range of pattern analysis  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Two-class objects are indicated in picture, where 

in section (A) they are not linearly separable but via 

projection to high dimensional space continues black line 

could separate them linearly with maximum Margin area. 

 

problems [10]. This class proposed by Vapnik et al. [9] 

for two class classification problem. Thereafter the SVM 

had extended to solve multi-class classification problems. 

The basic of SVMC rely on preprocessing the training 

data points and tries to design a hyperplane which could 

separate training data points correctly. For any new given 

data point, SVMC measure distance of the data point with 

determined hyperplane to find its associated cluster.  

The training data points are labeled entries where the label 

indicates the entry cluster. Measuring process was 

performed by a distance function, called Kernel function. 

Whereas the Kernel function would measure objects’ 

distance, there are a lot of different Kernel functions 

according to objects’ type and kind of their distribution. 

The accuracy of SVMC is strongly related to the Kernel 

function and surely, like other types of learning methods, 

to the training data points which should represent their 

clusters clearly. In any kind of problems, there are  

two types of data points; the first which would be separated 

linearly and those which are non-linearly separable. 

There is a fact for non-linear separable data points, that 

by increasing data points’ dimension, they could be 

separated via a linear function. SVMC uses this fact and 

apply a map function to inject data points to a higher 

dimensional subspace from the Hulbert space, where suits 

Kernel function supposed to separate data points linearly. 

The map function �: Rd�H should satisfy some 

constrains which are indicated in [11]. SVM process 

graphically depicted in Fig. 1. 
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Fig. 2: Clustering of a data set containing 183 data points. Different 

clusters are represented by different colors. (8)

 

 

 

 

 

Fig. 3: Sample of REM sequences, where non

lines, separates two exact matched parts, black and blue.
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S[i...j] to denote a substring of S that shows S[i]S[i+1] ... S[j]

characters.
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Fig. 4: The subsequence � repeated at positions i and j. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: The suffix tree of S=”babab”. 

 

corresponds to exactly one path from the tree’s root to  

a leaf (by concatenating edges’ labels). 

Thereafter, when the sequence’s suffix tree is 

constructed, Lyngso’s method make an AVL-Tree for  

the leafs. Moreover, by performing a common tree traversal 

algorithm like post order traversal, Lyngso extracted 

repeated subsequences which bind a gap. 

Therefore by using Lyngso algorithm our specific 

exact matched sequences would be discovered. 

 

Adjunction of determined exact matched subsequences 

As mentioned to find a REM sequence we should find 

exact matched subsequences which bind a gap. Assume 

previous algorithm stores exact matched sequences as  

a link list A such that each node {’a’— a ⊆ A} denotes  

a pair (ia, ja, ���a��). 

Here, we sort the link list’s nodes on their starting 

point, ia, and traverse it. During the traversing process, 

each two continuant nodes ’b’=(ib, jb, ���b��) and ’a’=(ia, ja, 

���a��) which satisfy following constrains would be 

adjunct together. 

ib-ia-���a��=�; 

jb-ja-���a��=�; 

Where � is length of bounded gap. 

Traversing process tries to find exact matches which 

can satisfy the constraint’s conditions. Attention that 

there is not any limitation on number of continued 

substring. for example if there were three nodes a, b, c 

where ia <ib <ic and a and b satisfy the constrains and also 

b and c do; at first, the algorithm merges a and band 

replace their nodes in A with a new node X=(ia, jb, 

���a��+���b��+�����) and moreover X and c will be  

merged to reach a bigger REM d = (ia, jc, ���a��+���b�� 

+���c��+2×�����).Finally the longer REM d will be placed 

instead of X and c, and traversing process kept on. 

This section’s algorithm indicated following. 

 

Step two, Clustering determined subsequences: 

Sequence alignment method is basic of common 

sequence clustering approaches which suits for measuring 

sequences’ distances [19- 21]. In this section, we also  

use sequence alignment method, but just as a part of SVC 

Kernel-Table of sequences alignments’ score was 

prepared via preprocessing computation, and feed  

to SVC-. Our SVC Kernel K(X, Y) is instantiation of Radial 

Basis Function (RBF) based on sequences’ alignment 

score. K(X,Y) determines measure of X and Y by  

Eq. (1). 

K(X, Y) = e �×AScore(X, Y)                                                  (1) 

The A is real positive number to scale the Kernel 

value for numerical stability and A score function returns 

the sequences’ alignment score. 

Whereas regular local or global sequence alignment 

methods are not eligible for measuring sequences distance 

for clustering process, we modified local sequence alignment 

method. Regular local sequence alignment method 

returns best score of aligned subsequences, where instead 

of best score our modified method returns sum of scores 

of local aligned subsequences.  

The foundation of support vector clustering proposed 

by [8] was defined for distributed data points on Gaussian 

distribution formula. Whereas [22] demonstrated, estimating 

Gaussian distribution for distribution of repeated 

subsequences on genome is not so bad estimation, SVC 

can professionally determine smooth clusters accurately. 

 

Step three, Discovering similar subsequences 

In this section, we use the results of previous sections 

to discover Solo LTR subsequences. Here, minimum 
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length of exact matched subsequences, L, is needed. Where  

to discover similar subsequences, whole of genome’s  

L-mer’s are examined to find their associated clusters. 

The clusters are those which determined in step two. 

Applying profile hidden markov model [5] or 

alignment method [23] are samples of introduced 

methods for discovering similar subsequences which 

need a lot of time to process. Support Vector Machines 

Classifiers (SVMC) is practical classifier which after 

preprocessing training data set could classify new given 

data point in linear time. The classification accuracy 

strongly related to the SVMC’s Kernel function and 

training data set’s entries. 

To discover similar subsequences, we apply SVMC 

on section two’s clusters as training data points and thereafter 

all of genome’s Lmer’s which have stored inside of 

constructed suffix tree would be classified to the clusters. 

 

CONCLUSIONS 

This paper is arranged to introduce computationally 

efficient, accurate, and practical method Support Vector 

Clustering (SVC) to the field of genome sequence 

analysis, specially discovering repetitive subsequences. 

Our method evaluated on simple data where its accuracy 

on the data base is notable. In this case, the applied Kernel 

functions are simple as possible just to show the ability of 

the method to differentiate classes, and it is clear that 

determining the functions based on distribution of given 

data base’s entries should improve the accuracy. 

In addition, SVC is strongly independent to 

predetermined repetitive subsequences (libraries) and also 

numbers of sequences’ repetition, therefore SVC is 

eligible to discover new repetitive subsequences with low 

number of repetitions. Whereas SVC is unsupervised 

clustering approach and by using it, monitoring number 

of classes and level of classes’ entries’ dependency are so 

handleable parameters, we believe there is great potential 

for extending the method for other sequence analysis 

problems in biological systems. Designing suitable Kernel 

functions or combining the SVC with other analyzers 

could yield to perfect method to attack to any kind of 

sequence analysis problems. 
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