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ABSTRACT: Potentiometric investigation on {H2O+NaNO3+PEG1500} mixtures were made  

at T=308.15K, using electrochemical cells with two ion-selective electrodes, (Na+ glass)  

as the cation ion-selective electrode against (NO3
- solvent-polymer PVC) as the anion ion-selective 

electrode. The mean ionic activity coefficients of NaNO3 were measured at different concentrations 

of  NaNO3 and PEG. Maximum concentration of electrolyte and PEG were 1 mol/kg and 0.12�mol/kg, 

respectively. The experimental data was modeled by utilizing the modified Pitzer equation  

and the activity coefficient ratio of PEG was evaluated by using Maxwell’s cross differential relation.  
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INTRODUCTION 

Water soluble and non-toxic polymers are very 

applicable and have been extensively utilized in different 

industries [1]. Their properties enable them to be used  

for commercial and technological applications such as 

purification of biological materials, pharmaceutical drugs, 

edible films for food coating and water treatment [2,3]. 

This type of polymers has been also used for liquid-liquid 

extraction in Aqueous Two-Phase Systems (ATPSs) 

which is a powerful, non-chromatographic, unit operation 

for the separation of biomolecules, and has been 

successfully applied in the purification of different 

biological materials, such as cells, virus, organelles, 

nucleic acids, proteins and enzymes [4,5].  

Aqueous polymer–salt systems have several advantages 

over the traditional systems due to the lower viscosity, 

higher density and lower cost of the salt phase [6].  

 

 

 

Since Poly Ethylene Glycol (PEG) is a water soluble 

and non-toxic polymer it has found several industrial 

applications and, hence, a number of researches have 

worked on determination of thermodynamic properties of 

aqueous solutions containing PEG [7-10]. 

Knowledge of activity coefficients of the constituent 

components in aqueous solutions is essential in 

calculation of phase equilibrium. A number of elaborate 

researches have focused on measurement and modeling 

of activity coefficients during recent years [11-13].  

So far different direct and indirect methods for 

measurement of activity coefficients of species in 

aqueous solutions containing electrolytes are introduced. 

Among which, isopiestic and potentiometric techniques 

have been widely used [14-17]. Lin et al. [18] measured 

activity of water in solutions containing PEG and 
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different salts, by using an improved isopiestic method. 

The results were correlated utilizing an empirical 

equation which combines the long-range electrostatic 

contribution from Guggenheim and Fowler with the 

short-range virial equation.  Ninni et al. [19] reported  

the water activity of binary and ternary solutions of PEGs  

at 298 K. They used the UNIFAC group contribution 

model for correlation and prediction of experimental data. 

Sadeghi [20] combined the electrolyte Wilson model 

together with the polymer Wilson model to represent  

the excess Gibbs free energy of aqueous polymer + electrolyte 

solutions. Morales et al. measured the activity coefficient 

of KCl, NaCl and LiCl in different mixtures containing 

water, salt and PEG by potentiometric method [21-23].  

In the present research, potentiometric method  

has been used to measure mean ionic activity coefficient 

of sodium nitrate in aqueous solutions of PEG (1500) + 

sodium nitrate + water at 308.15 K. We have made 

advantage of the modified Pitzer equation to model the 

experimental data. Finally, activity coefficient ratio of 

PEG has been evaluated based on the Maxwell’s cross 

differential relation. 

 
EXPERIMENTAL  SECTION 

Sodium nitrate with more than 99% purity and PEG 

(MW~1500) were obtained from Merck Ltd. The salts 

were oven-dried at 120˚C for 24 hours prior to use.  

All the solutions were prepared by de-ionized water with 

a conductivity of less than 0.8 µs/cm. A potentiometer 

(Model PP-50) with a resolution of ±0.1 mV, Na+ ion 

selective electrode (Model PY-I03) and ���� ion selective 

electrode (Model PY-I05) were obtained from Sartorius. 

The electrodes were calibrated exactly according to the 

manufacturer instructions. A water bath with accuracy of 

±0.01º C has been used in order to fix the temperature of 

the solution. The apparatus was equipped with a magnetic 

stirrer to prevent temperature and concentration gradients 

throughout the solution. The experiments were carried 

out in a jacketed glass beaker under the conditions 

mentioned above. 

All the solutions were prepared on molality base with 

a resolution of ±10-4 gr and all the experiments were 

carried out at 308.15±0.1 K. Seven sets of experiments 

were performed at 0, 0.02, 0.04, 0.06, 0.08, 0.1 and 0.12 

molalities of PEG. During each set of experiments,  

the concentration of NaNO3 was increased in 10 steps from 

0.1 to 1 molal by addition of salt, while the concentration 

of PEG was kept constant. The data was recorded only 

when the potentiometer reported the voltage with  

a deviation less than 0.1 mV per minute. All the 

experiments were repeated three times and the averaged 

values were reported. 

 
THEORITICALL  SECTION 

Electrical potential difference is obtained by 

subtracting the electrical potential of anion ion selective 

electrode from the electrical potential of cation ion 

selective electrode [13].  

cation anionE E E∆ = −                                                        (1) 

In the case of a 1:1 single electrolyte system;  

Cation ISE | Electrolyte (ms) |Anion ISE (l) 

Potential  difference  between  the  two  cation  and  

anion ion selective electrodes can be expressed as follows: 

( )( ) 0
sE E 2Sln(m )ΙΙ

±∆ = + γ                                              (2) 

Where ( )
cation anionE E EΙ∆ = −  and 

(I)
±γ  is the mean 

ionic activity coefficient of the electrolyte in the cell of 

type (I). S is the Nernstian slope of electrodes and equal 

to RT/F, in which R is the universal gas constant, T is  

the absolute temperature, and F is the Faraday number. 

The term E0  is the standard electro motive force (e.m.f.) 

of the cell which includes all the asymmetry, internal 

solution, and reference potentials of the cation and  

the anion ion-selective electrodes [24]. It is evident from 

equation (2) that the value of S can be obtained from  

a linear regression of the values of (I)E∆  plotted against 

( )
ln(m )s

Ι
γ± . The values of (I)γ±  can obtained from 

literature at each molality of �� [25]. In the presence of 

the solute, the electrochemical cell of type (I) changes  

to the following form of cell (II) and the mean ionic activity 

coefficient of NaNO3 is changed, correspondingly.  

Cation ISE | Electrolyte (ms) + Solute (mp) | Anion ISE (II) 

Nernst equation for cell (��) is then as follows: 

( )(II)(II) 0E E 2ln ms∆ = + γ±                                             (3) 

In the above equation, S and E˚ have the same values 

as those in Eq. (2). 
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Table. 1: Coefficients of Eq. (6) 

�(0) �(1,0) �(1,1) � � �0 rmsd a 

1.62935 0.00195 -0.01677 0.42162 -6.43548 0.07359 0.00971 

a   root mean square deviation 

 

Subtracting Eq. (3) from Eq. (2) and rearranging gives: 

( ) ( )(II) (I) (II) (I)ln E E 2Sγ γ = ∆ − ∆± ±                                (4) 

Having the values of ∆E(I)  and ∆E(II) and evaluating 

S, the ratio of the mean ionic activity coefficients  

of the electrolyte 
(II) ( )( )Ι
± ±γ γ  in the presence of polymer, 

to the corresponding value in the absence of polymer,  

at the same electrolyte molality, can be calculated. 

Maxwell cross-differential relation can be utilized for 

determination of activity coefficient ratio of the polymer 

in the presence and absence of the electrolyte 

( )

( )
p

p

ΙΙ� �
γ� �

Ι� �� �γ� �

: 

m ,T,P
s

2 E 2 E lnG G

m m m m mp p pS S

� � � � � �∂ γ∂ ∂ +� � � � � �= �ν =
� � � � � �∂ ∂ ∂ ∂ ∂� � � � � �

     (5) 

pm ,T,P

ln p

ms

∂ γ� �
� �� �∂� �

 

 

In the above equation, �� is the excess Gibbs free 

energy of the mixture and 	 is the sum of the 

stochiometric coefficients of the electrolyte ions 

( )ν =ν + ν+ − . 

 
MODELING 

In this work, among the various applicable 

thermodynamic models, the modified Pitzer equation  

has been utilized to correlate the activity coefficients of 

NaNO3. This model was first proposed by Merida et al. [26] 

and has later been successfully applied by different 

researchers [13,27]. In an aqueous mixture containing  

an electrolyte and a polymer, different binary interaction 

parameters must be taken into account. However,  

the most important and the most effective ones are  

the ion-polymer and polymer-polymer binary interaction 

parameters. Taking into account the dependence of  

ion-polymer binary interaction parameters on both the 

ionic strength of the solution and the polymer molality, 

the following equation for mixture of one electrolyte plus 

polymer is proposed:  

(II)
2

p p s p s p(I)
ln m 'm m m m m±

±

� �γ
= χ + χ + ξ + ω� �� �γ� �

                 (6) 

Where χ accounts for ion-polymer interaction, and 

I′χ =∂χ ∂  represents the influence of ionic strength on 

ion-polymer binary interactions. � and � refer to ternary 

interactions of polymer-ion-ion and polymer-polymer-

ion, respectively. Both � and � are assumed to be 

independent of the ionic strength of the solution, due to 

their small values. Parameters χ and χ' in Eq. (6)  

are defined by Eqs. (7) and (8).  

( ) ( ) ( )( ) ( )0 1,0 1,1 2
0m . 2 I .pχ =χ + χ + χ α                            (7) 

( ) ( )1 2 1 21 1 I exp I0
� 	− + −α

 �

 

I′χ =∂χ ∂ =                                                                    (8) 

( )( ) ( )1,0 (1,1) 2 2m . 2 I .pχ + χ α  

( ) ( )1/2 1/2 1/2
0

1 1
1 1 1 I I I exp I02 2

� 	� �� �− + + + + α + −α� �� �� 
� �� �
 �

 

 In the above equations, I is the ionic strength  

of the solution, �(1,0) and �(1,1) are adjustable parameters 

and �0 is a constant. 

The non-linear optimization procedure of Davidon-

Fletcher–Powell (DFP) [28–30] has been used to fit  

the experimental data. The Root Mean Square Deviation (RMSD) 

is used as the objective function and is defined by Eq. (9): 

( )

( )

( )

( )

1 2
2

exp calc

i i

n
rmsd n

i 1

ΙΙ ΙΙ
± ±

Ι Ι
± ±

� �� �� � � �� �γ γ� �= −� � � � �� �� � � �� �γ γ=� �� � � �� �� �

    (9) 

Where, n is the number of data points. The 

experimental data points have been correlated to obtain 

the coefficients of Eq. (6). The results are presented in 

Table 1.  
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Table 2. Experimental data for the mean ionic activity coefficient of NaNO3 
��
��� ��

��� � at different molalities of NaNO3  

and PEG at T = 308.15 K 

m(2) m(1)/± ±γ γ  

m (NaNO3) mol Kg-1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

m (PEG) mol Kg-1           

0.02 1.002 1.006 1.008 1.010 1.015 1.020 1.022 1.024 1.027 1.030 

0.04 1.013 1.020 1.023 1.027 1.037 1.040 1.047 1.052 1.057 1.060 

0.06 1.068 1.074 1.077 1.079 1.088 1.093 1.099 1.103 1.105 1.108 

0.08 1.082 1.090 1.092 1.094 1.103 1.108 1.116 1.118 1.122 1.125 

0.1 1.100 1.111 1.115 1.121 1.126 1.129 1.135 1.142 1.144 1.147 

0.12 1.104 1.117 1.123 1.127 1.137 1.142 1.147 1.151 1.153 1.156 

 

Using the adjusted parameters the activity coefficient 

of  polymer can be calculated based on Maxwell equation. 

Activity coefficient  ratio  of  polymer  in  the  presence  

and  absence  of electrolyte 
( )

( )
p

p

ΙΙ

Ι

� �γ
� �
� �γ� �

 has been 

determined by differentiation of Eq. (6) with  respect  to 

mP following by integration with respect to mS. 

( )

( )

( )

( )

S

p
p S

p m ,T,P

ln ln m .dm

ΙΙ ΙΙ
±

Ι Ι
±

� � � �� �γ γ� � = υ ∂ ∂� �� �� � �� �� �γ γ� �� �� �
  (10) 

 

RESULTS  AND  DISCUSSION 

In this work, the potential differences of sodium and 

nitrate ion selective electrodes have been measured  

at different concentrations of NaNO3 (ms= 0.1-1 mol/kg 

with 0.1 interval) and PEG (mp= 0.02-0.12  mol/kg with 

0.02 interval) at constant temperature equals to 308.15 K. 

The accuracy of the measured data has been investigated 

using available experimental activity coefficient data  

on aqueous solution of NaNO3. In Table 2 mean ionic 

activity coefficient ratio of NaNO3 at different molalities 

of salt and polymer is presented. In Fig. 1, the mean ionic 

activity coefficient of sodium nitrate is depicted against 

the molality of PEG at fixed molality of sodium nitrate. 

The results show that at different molalities of sodium 

nitrate the presence of PEG has the same effect on the 

activity coefficient of salt. Meanwhile, it can be seen that 

the presence of PEG increases the activity coefficient of 

electrolyte. It means that in the presence of PEG the 

solubility of NaNO3 can decrease. This result is observed 

at different molalities of NaNO3. In Fig. 2 the activity 

coefficient ratios of NaNO3 at different molalities  

is depicted as a function of molalities of PEG. It can be seen 

that the molality of electrolyte has a positive effect on 

augmentation of activity coefficient ratio. In our point of 

view, this phenomenon can be referred to ion-dipole 

interaction between PEG and the present ions. 

Meanwhile, the slope of figures show that the effect of 

PEG on activity of electrolyte decreases at higher 

molalities. In Fig. 3, the results of our modeling 
 

are presented. As it is observed, the model is able  

to correlate the experimental data fairly good. In Fig. 4, 

activity coefficient ratios of PEG in the presence and 

absence of electrolyte versus electrolyte molality is 

illustrated at different molalities of PEG. It is also evident 

that the presence of electrolyte has caused an increase  

in the activity coefficient of PEG. It is worth mentioning 

that in this case the effects of electrolyte on the activity 

coefficient of PEG increases at higher molalities.  

 

CONCLUSIONS 

In this work new potentiometric measurement 

experiments have been performed on 

{H2O+NaNO3+PEG1500} mixtures at T=308.15K. 

Using two ion selective electrodes, the mean ionic 

activity coefficients of NaNO3 have been measured  

at different concentrations of NaNO3 and PEG. All  

the produced experimental data have been correlated 

using a modified version of Pitzer equation. Maxwell’s 

cross differential relation has been utilized for calculation 

of activity coefficient ratio of PEG.  
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Fig. 1: Experimental data for the mean ionic activity coefficient of NaNO3 as a function of molality of PEG at different NaNO3 

molalities: m (NaNO3) = 0.1 (a); 0.2 (b); 0.3 (c); 0.4 (d); 0.5 (e); 0.6 (f); 0.7 (g); 0.8 (h); 0.9 (i); 0.1 (j). (�) ��
��� ��

��� , (T=308.15 K). 

(a)         m (NaNO3) = 0.1 mol/kg 

(b)         m (NaNO3) = 0.2 mol/kg 

(c)         m (NaNO3) = 0.3 mol/kg 

(d)         m (NaNO3) = 0.4 mol/kg 

(f)         m (NaNO3) = 0.6 mol/kg 

(g)         m (NaNO3) = 0.7 mol/kg 

(h)         m (NaNO3) = 0.8 mol/kg 

(e)         m (NaNO3) = 0.5 mol/kg 

(i)         m (NaNO3) = 0.9 mol/kg 

(j)         m (NaNO3) = 1.0 mol/kg 
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Fig. 2: Experimental data for the mean ionic activity coefficient of NaNO

molalities: m (NaNO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: The mean ionic 
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m                                                Concentration in molality 

mP                                                       Molality of polymer 

mS                                                         Molality of NaNO3 

(I)
±γ                    Mean ionic activity coefficient of NaNO3  

                                        in aqueous solution without PEG 

(II)
±γ                    Mean ionic activity coefficient of NaNO3  

                                             in aqueous solution with PEG 

γP                                       Activity coefficient of polymer 

GE                                               Excess Gibbs free energy 

T                                                                      Temperature 

P                                                                             Pressure 

�                                                 Stoichiometric coefficient 

�                                                     Ion-polymer interaction 

��                                                                               	�/	(I) 

I                                                                     Ionic strength 

�                           Ternary interactions of polymer-ion-ion 

�                  Ternary interactions of polymer-polymer-ion 

�0                                                                      Fixed value 

�(0)                                                   Adjustable parameter 

�(1,0)                                                   Adjustable parameter 

�(1,1)                                                   Adjustable parameter 
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