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ABSTRACT: The famous definition of RTD is based on the volumetric flow rate but is 

experimentally defined using the tracer concentration. These different views have erroneously 

limited the application of the velocity profile for RTD evaluation to the laminar flows.  In this work, 

a more general sense of RTD is introduced and it has been emphasized that regardless of the 

dispersion behavior, the velocity profile is sufficient in order to obtain the corresponding RTD. A 

general algorithm for RTD evaluation using axial velocity profile is developed and the relations 

were derived for different systems. In addition, the corresponding velocity profiles to the famous 

RTD models were numerically evaluated. It has been shown that the final forms are consistent 

compared to the previous relations for laminar flows. 
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INTRODUCTION 

The distribution of different lengths of time to pass 

through different routes in a vessel is called RTD denoted 

by E(t) function [1]. The ever-increasing amount of 

literature on this topic since Danckwerts' work [2] has 

generally followed his nomenclature [3].  

The RTD concept was used in various processes such 

as fixed and fluidized bed reactors, two-phase stirred 

tanks, heat exchangers, distillation and absorption 

columns, chromatography columns, and trickle bed 

reactors beside other fields such as microfluidics, 

hydrology, pharmaceutical manufacturing, and mixing 

behavior of solid processes [4]. The RTD applications are 

so wide that helped the researchers with the mathematical 

modeling of static mixers [5]. 

 

 

 

The value of E(t).dt is the fraction of the fluid leaving 

the vessel with the age between t and t+dt and therefore 

E(t) can be defined as the response to the unit impulse 

function. The transfer function, G(s), is defined as the ratio 

of the Laplace transform of the response function to the 

Laplace transform of the input function [6]. Replacing the 

Laplace transform of the unit impulse function as unity, the 

RTD can be derived via the inversion of Laplace 

transforms of the transfer function 

   
- 1

E t = L G ( s )                    (1) 

where can be used for the systems with a defined 

transfer function, keeping in mind that some systems do 

not have a transfer function, e.g. a pipe in the laminar flow  
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Fig. 1 Two corresponding modeling of a pulse input to the completely mixed vessel. (a): using a new pulse input  

at t = 0; (b): addition of a specified value to the vessel at the instant t = 0. 

 

condition. The theoretical RTD of laminar flow is derived 

using the volumetric flowrate forcing function [3]. However, 

if the tracer concentration is studied, the injection and 

detection methods should be specified [7,8]. It has been 

shown that at Reynolds number (Re) <3000, a theoretical 

RTD for laminar flow that assumes no radial mixing 

provides a good approximation [9].  Levenspiel et al. 

derived the RTD of the laminar flow of liquids in various 

forms of vessels [1].  

Application of pulse input in a laboratory as the 

requirement for full cross-sectional mixing typically 

requires the injection to occur some distance upstream 

from the monitoring position. Recently the up-and 

downstream concentration profiles are measured and the 

data are deconvolved to give the system’s RTD [9] 

Basically, the forcing function should be the input 

volumetric flowrate, however experimentally the tracer 

concentration is measured and the ratio of its output/input 

concentration will denote RTD. Some recommendations 

are presented in the literature for selecting the tracer 

materials [4]. Likewise, other properties such as 

radioactivity [10,11], pH, and electrical conductivity in 

the tracer experiment can be investigated. For variable 

flow systems, the product of concentration by volumetric 

flowrate should be studied [12]. In this work, it is 

proposed that similar to the above extensions, one 

perhaps uses other forcing functions and measures the 

related responses such as temperature variation against 

time without using any external tracer in order to define 

a new suitable RTD. Nevertheless, it probably results in 

a relation with a different form compared to the ordinary 

RTD.   

Suitable forcing function in the Dirac delta form 

The RTD of a vessel will be derived as the response  

to an impulse Dirac delta function, ( )t  in the unit of 

inversion of time. However, the forcing function needs  

a suitable multiplier in order to have the correct dimension. 

Without loss of generality, we enter the input impulse 

function ( )in t  (e.g. concentration of tracer) to a 

completely mixed flow vessel as is shown in Fig. 1a.  

The response ( )o u t t  (e.g. the output concentration  

of the tracer) should be similar to the response of another 

view of this system in which the amount of input    

(e.g. M/V where M  is the mass of tracer [kg] and V is 

the volume of the tank [m3]) enters the vessel at t = 0 

instantaneously, as is shown in Fig. 1b.  

The related balance equation (e.g. the tracer continuity 

equation) in Fig. 1 (a) is [6] 

o u t

i n o u t

d ξ ( t )
ξ ( t ) - ξ ( t ) = τ

d t
                  (2) 

Where  = V/qm and the outlet function is equal to its 

value in the vessel because of a completely mixed vessel 

assumption. Also, the function   is defined in the 

deviation form and consequently, the initial condition is 

 ( )o u t 0 0 . 

The Laplace transform of Eq. (2) can be rearranged to 

i n

o u t

(s )
(s )

s 1


 

 
                    (3) 

The balanced equation of the corresponding system of 

Fig. 1 (b) is 
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o u t

o u t

d ( t )
0 - ( t )

d t


                      (4) 

with the initial condition (0 )      and the Laplace 

transform of Eq. (4) is 

o u t
ξ ( s )

s 1

  

 

                    (5) 

The Eqs. (3) and (5) are equal unless at t = 0, therefore 

the input impulse function is  

i n
ξ ( t ) = τ Δ ζ δ ( t )                    (6) 

It is worth noting that although the form of the impulse 

function is derived after its entrance to a completely mixed 

vessel, it will have the same form for other applications as 

well. The various initial instantaneous input quantity   

and the corresponding multiplier of the Dirac delta 

function of Eq. (6) are reported in Table 1 for different 

experiments. The first row of Table 1 is consistent with [1]. 

The required assumptions may be constant input flow rate, 

constant density, and constant heat capacity to satisfy Eq. (2) 

for different rows of Table 1. 

 

The RTD as a function of the velocity profile 

The RTD is basically defined as the fraction of the 

outlet stream as a function of time. Therefore, the best 

experiment is the determination of the outlet flowrate  

as the response to the impulse qin as forcing function. 

Nevertheless, usually, the tracer concentration is studied 

(Cin among the cases of Table 1). According to the usual 

derivation of RTD based on the tracer concentration,  

it relates to the velocity profile if and only if there is  

no transfer of molecules in the radial direction between 

streamlines [3]. Therefore, only laminar and plug flow 

velocity profiles can be analytically used to derive the 

correct RTD. Also, the injection and detection methods 

should be specified. However, if the outlet flowrate, q(t), 

is studied and a step forcing function, q0, is used, 

regardless of the dispersion behavior of the stream, the 

RTD can be defined as 

 
0

d q
E t =

d t q

 

 
 
 

                    (7) 

and since dq = udAc, where u is fluid velocity 

distribution and Ac, is cross-section area. For the velocity  
 

Table 1: The entered amount at t = 0 and the multiplier  

of the corresponding Impulse function. 

Impulse type        

3

i n
C k g / m 

 
 3

M / V [ k g / m ]  3

i n
M / q [ k g .s / m ]  

T[K ]  
p

Q
[ K ]

V C





 

i n p

Q
[ K .s ]

q C





 

3

i n
q [ m / s ]  3V

[m / s ]




 3
V [ m ]  

 

distributions with more than one independent variable the 

final result is complicated [13] however for axial flow 

where the velocity depends only on one independent 

variable, Eq. (7) will be rearranged to 

   
c c

d A / A
E t = f x

d t
                   (8) 

where  
m

u
f x

u
 , um is mean velocity  0 c

q A   , x is 

a dimensionless position variable, and the absolute 

operator warrants a positive value of E. The final term of 

Eq. (8) could be written as a function of x like 

c c
d A / A d x

= g ( x )
d t d t

                   (9) 

Where g(x) is a function determined based on the 

problem geometry. If the length of the conduit is L,  

the flow-through whole cross-section, Ac, passes it during 

the mean residence time () and the flow through the area 

element, dAc, passes it during the time t. Therefore  

 
τ 1

= = f x
t θ

                               (10) 

Where  is the dimensionless time variable. 

Differentiation of Eq. (10) will result in 

2

d x τ 1
=

d t d f / d xt
                              (11) 

According to Eqs. (8) to (11) and E() = E(t), RTD 

can be derived through 

 
 

3

g x1
E θ =

d f / d xθ
                              (12) 

Where Eq. (12) together with Eq. (10) result in E versus  

for any specified velocity profile regardless of laminar  
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or turbulent regimes. The velocity profile usually is expressed 

as f = u / um or in the form of u / umax where assuming 

 umax = L / tmin it can be written as 
m i n m a x

1 u
f ( x ) =

θ u
 or 

equivalently 
m i n

m a x

θu

u



 with 

m i n m i n
θ t  . The value of 

m i n
θ  may be determined via the definition of mean velocity as 

   
m a x

m i n

x

x
f x g x d x = 1                               (13) 

where xmin and xmax were specified based on the 

geometry of the system; or the condition of  

 
m i n

E d 1



                                  (14) 

Sometimes both Eq. (13) and (14) are needed. 

 

The RTD of the logarithmic velocity profile 

The logarithmic law is used for turbulent flow in pipes 

like power-law profile, [14] 

1
u l n y B
 
 


                               (15) 

Where   and B are constants, *
u u / u

 , 

*

w
u /  

, 
*

y y /

   and * *

v / u  . According to the definition of 

y= R-r, the maximum velocity at the center of the pipe  

( m ax y R
u u

 

 



 )  and Eq. (10) after some rearrangement  

m i n +

m a x

1
θ f ( x ) = l n ( 1 - x ) + 1

κ u
                (16) 

where x = r/R and may change in the range of 

x 0 1  . The cross-section element in the cylindrical 

coordination is dAc = 2rdr that besides total cross-section 

as Ac = R2 and Eq. (9), it can be manipulated to give  

g(x) = 2x . Finally replacing in Eq. (12) and Eq. (10),  

the final RTD is derived as 

 
 

m i n

3

m i n

3
E

1


  

  
                                       (17) 

m i n m i n

m i n m i n

3 3
1 e x p e x p

2 1 2 1

             
                          

 

 
 

 

 

 

 

 

 

 

 
 

Fig. 2: The integral of Eq. (17) against min were only  

the value of min = 0.32 satisfies Eq. (14). 

 

However, the value of min should be determined using 

Eq. (14). The related integration is evaluated numerically 

for different values of min as is shown in Fig. 2.  

According to Fig. 2 the best value that satisfies 

 the Eq. (14) with two decimal places is min = 0.32. Also, 

Eq. (16) and Eq. (13) will result in a new equation as 

m i n

m a x

3
1

2 u


  


                              (18) 

Where immediately arises u+
max= 2.2. The mean 

velocity based on Eq. (15) is  

m

1 3
u l n R 2 B
 

  
 

                              (19) 

After some manipulations, Eq. (19) beside Eq. (15)  

for maximum velocity and Eq. (18) imply B and   are not 

independent but relate together via 

3
B

2



                                (20) 

Eq. (20) is derived in this work based on the unity area 

of RTD and limits the general form of Eq. (15). Especially 

Eq. (19) is simplified lnmu R


 


1
. If the value of  

 = 0.41 is chosen as reported in fluid mechanics literature, 

the other parameters will be B = 3.66; 
m a x

u 5 . 4 ;


  

m
u 1 . 7


 .  

Usually the dispersion model and tanks-in-series 

model apply to turbulent flow in pipes and laminar flow in 

very long tubes [15]. Here is the RTD of the dispersion model  

1.08 

 
1.06 

 
1.04 

 
1.02 

 
1 

 
0.98 

 
0.96 

E
.d


 

0.25                                       0.3                                        0.35 

min 
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Table 2: The RTD corresponding to the velocity profile for various type of flow. 

Type of 

flow 
Velocity profile x 

g(x

) 
f(x) RTD parameters 

Laminar 

pipe flow 
 

2

m a x
u / u 1 r / R  

 
 

x r / R

0 x 1



 

 

2x    
2

m i n
1 / 1 x    

m i n

3
E


 



 
m i n

1

2
   

Couette 

flow m a x
u / u 1 y /    

x y /

0 x 1

 

 

 

1    
m i n

1 / 1 x    
m i n

3
E


 



 
m i n

1

2
   

Falling 

film flow 
 

2

m a x
u / u 1 y /    

x y /

0 x 1

 

 

  1    
2

m i n
1 / 1 x    

1 / 2

m i n m i n

3

1
E 1

2


  

   
  

 
m i n

2

3
   

Laminar 

film flow 

 
m a x

u y y
1 1 1

u

   
    
   

    

 

x y /

0 x 1

 

 

 

1 
     

m i n
1 / θ 1 - x 1 + 1 - β x  

 

   

- 1 / 2

2m i n m i n

3

θ θ
E β + 4 1 - β 1 -

θθ

  
    

  

 

m i n

4

6

 
   

Power law 
profile  

1/ n

m a x
u / u 1 r / R   

 

x r / R

0 x 1



 

 

2x    
1 / n

m i n
1 / θ 1 x   

n n 1

m i n m i n m i n

3
E 2 n 1

      
       

       

 

   

2

m i n

2 n

n 1 2 n 1
 

 

 

Logarithmi

c profile 

1
u l n y B
 
 


  
x r / R

0 x 1



 

 

2x  
m i nm i n m a x

1 1
l n 1 x

u


 
 

  

 

 

m i n m i n

3

m i nm i n

m i n

m i n

E

3 3
1 e x p

2 11

3
e x p

2 1

 

       
               

    
  

     

  m i n

m a x

0 . 3 2 ;

u 5 . 4

0 . 4 1;

B 3 . 6 6



 



 



  

Flow 

through 

annulus 

22

2

Δ P . R r
u ( r ) = 1 -

4 μ L R

1 - κ R
- l n

l n ( 1 / κ ) r

  
  

 

 
 
 

  x r / R

x 1



  

 

2x 
2 2

K 1 - x + 2 λ l n x 
 

 

 
 

2

3 2 2 2

1 x
E

θ 1 - κ K x - κ

1
= f ( x )

θ

 
  

2

2

m i n

2 2

1 - κ
2 λ = ;

l n ( 1 / κ )

1
θ =

f ( λ )

2
K =

1 + κ - 2 λ

  

 
for closed-closed boundary conditions is derived by 

differentiation of the response to the step function of inert 

tracer concentration [16] as 

 
 

2
11 1 / P e P e

E e x p
44

   
   

   
 

               (21) 

Where Pe is Peclet number [1]. The RTDs corresponding 

to different velocity profiles is represented in Table 2. 

 Among various relations, the RTDs of laminar flows 

including the first four rows of Table 2 were previously 

developed [15] and have precisely the same forms as 

derived in this work that verified the general formula 

developed here. Since min = um / umax, all velocity profiles 

will have a nonzero min. The range of x determines the 

limits of Eq. (13). The parameters are evaluated using  

Eq. (13) or Eq. (14) or both of them. 

Fig. 3 shows different possible RTD for pipe flow 

including logarithmic profile, Eq. (17); power law profile [17] 

with n = 6 and 10; dispersion model with open-open 

boundary conditions [3] at Pe = 1; dispersion model with 

closed-closed boundary condition, Eq. (21), at Pe = 1; 

tanks-in-series model with N = 2 and laminar flow. 

 
The RTD of flow through an annulus 

As the last example, the velocity profile of a flow-

through annulus [18] is used to derive the corresponding 

RTD. The flow regime is assumed in the range of   

  r/R  1 and the maximum velocity will be at r = R  

Where 

1 / 2
2

1 1

2 l n (1 / )

  
   

  

. The ratio of u/um = f  will be 

 
2 2

f x K 1 x 2 l n x    
 

               (22) 
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Fig. 3: The RTD of different models for pipe flow including 

logarithmic profile, power law (n=6 and 10), dispersion model 

(closed and open boundary condition), and tank-in-series 

model (N=2), and laminar flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: The RTD of annular flow for different radius ratios of 

the inner to outer pipe (0.3, 0.5, and 0.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: The velocity profile corresponding to the dispersion 

model with open-open boundary conditions for different values 

of Pe (1, 10, and 90). 

Where K = 2/(1+ 2 - 22) . Eq. (12) leads to  

 
 

2

3 2 2 2

1 x
E

θ 1 - κ K x - κ

                  (23) 

Where E is a function of  beside Eq. (10). However, 

evaluation of E versus  is more straightforward if x is 

specified at first and then  and E are calculated. However, 

for testing Eq. (14) it is worth noting that as x increases 

from  to , the value of  decreases. Therefore, for 

numerical integration purposes, the values of  and E 

should be sorted at first. Fig. 4 shows the RTD of annular 

flow for different values of . 

According to Fig. 4 the RTD is nearly independent of .  

 

The velocity profile corresponding to the famous RTD 

models 

If the vessel is in a cylindrical geometry- as usually 

occurs for pipe flow, packed column, etc. - the Eq. (12) 

will take the following form 

 
3

1 2 x
E -

d f / d xθ

                   (24) 

Eqs. (24) and (10) may be used to develop the velocity 

profiles for the famous RTD models. Using the dispersion 

model with open-open boundary conditions [3] the 

following differential equation should be solved 

numerically to derive f(x) versus x 

 
2

5 / 2
P e f -1d f

= - 4 x f e x p
d x P e 4 f

 


 

 
 

                (25) 

The final result using the function ode45 in MATLAB 

is depicted in Fig. 5. The shape of the curve especially for 

Pe = 1 is completely different compared to the power-law 

or logarithmic velocity profiles. 

A similar equation based on Eq. (21) for closed-closed 

boundary conditions is 

 
2

5 / 2
P e f -1d f π / P e

= - 8 x f e x p
d x 4 + f 4 f

 

 

 
 

               (26) 

The final result is shown in Fig. 6.  

The theory of the dispersion model is based on tracer 

concertation. Therefore, the derived velocity profiles  
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Fig. 6: Fig. 6 The velocity profile corresponding to the 

dispersion model with closed-closed boundary conditions for 

different values of Pe (1, 10, and 90). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: The velocity profile corresponding to the tanks-in-series 

model for a different number of the tanks (1, 10, and 90). 

 

 

Eqs. (25) and (26) are correct if and only if the velocity 

profile coincides with the concentration profile.   

Finally, the velocity profile of the tanks-in-series 

model can be derived as the solution of the following 

differential equation 

  N + 2 N / f

N

2 N -1 !d f
= - x f e

d x N

                (27) 

The numerical solution leads to Fig. 7 as the velocity 

profile corresponding to the tanks-in-series model for RTD.  

The case of N = 1 denotes the velocity profile of a pipe 

in a completely mixed flow condition if the velocity 

distribution is considered a one-dimensional radial 

function. It does not have any physical sense. Therefore, 

the parameter N in the velocity profile derived based on 

tanks-in-series should be considered as a parameter of the 

model without any physical meaning. 

 

CONCLUSIONS 

In this work, it was shown that each axial velocity 

profile corresponds to an individual form of RTD and vice 

versa.  This conclusion is not restricted to laminar flows as 

reported in previous works. In addition, various senses of 

RTD can be introduced based on the applied forcing 

function. Based on these findings, the following cases are 

mentioned as the conclusions: 

● A theoretical basis for the definition of some useful 

RTDs was established. 

● The RTDs corresponding to logarithmic velocity 

profile, power-law velocity profile, and laminar flow 

through an annular pipe were derived for the first time. 

● The general form of the logarithmic velocity profile 

has two constants that are related together. 

● The velocity profile corresponding to famous RTD 

models is numerically derived.  

 
Supporting Information 

The proof of the equation (21), and MATLAB codes 

for generating Figs. 2−7(PDF). 

 
Numencluture 

Ac          Cross section, m2 

B          Constant 

C    Concentration, kg/m3 

Cp    Specific heat capacity, j/kg.K 

E(t)                RTD function 

f(x) = u / um              Dimensionless velocity  

g(x)    A geometric function  

G(s)          Transfer function 

M          Mass, kg 

N           Number of tanks 

Pe               Peclet number 

Q              Heat, j 

q              Flow rate, m3/s 

R        Radius, m 

R        Radial position, m 

T             Temperature, K 

t            Time, s 

V     Volume, m3 

x         Dimensionless position variable 

y      Position variable, m 
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Subscript 

in                Input 

max        Maximum 

min        Minimum 

out             Output 

w                 Wall 

 

Superscript 

*                           Characteristic base on the viscous scale   

+                          Dimensionless base on the viscous scale   

 

Greek letters 

    Characteristic length scale, m 

(t)       Impulse Dirac delta function, 1/s 

  Denotes some suitable quantity  

=t/      Dimensionless time 

                 Constant, radius ratio of the inner to outer pipe 

          Constant 

 =  /            Kinematic viscosity, m2/s 

          Denotes some suitable function 

              Density, kg/m3 

        Time constant, space time, stress 
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