
Iran. J. Chem. Chem. Eng. Research Article Vol. 40, No. 3, 2021 

 

980                                                                                                                                                                  Research Article 

 

 

Exact Analytical and Numerical Solutions  

for Convective Heat Transfer  

in a Semi-Spherical Extended Surface with Regular Singular Points 
 

 

Nematollahzadeh, Ali*, +; Jangara, Hossein 

Chemical Engineering Department, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, I.R. IRAN 

 

 

ABSTRACT: In this study, an exact analytical solution for the convective heat transfer equation 

from a semi-spherical fin was presented. To obtain a mathematical model, the system was assumed 

to be a lump in the vertical direction and the governing equation in the Cartesian coordinate was 

transferred to the Mathieu equation. The exact solution was compared with numerical results such as 

the finite difference method and midpoint method with Richardson extrapolation (Midrich). Not 

surprisingly, the exact solution prevailed over the numerical solutions in terms of accuracy and ease 

of use. Furthermore, the effect of Biot number on the heat transfer of the fin and the fine performance 

was investigated. The relative error of the results obtained from the analytical and numerical 

solutions at the base, center, and tip of the fin was 0, 7.72, and 40.25 percent, respectively. The results 

showed that the relative error between the analytical and numerical solutions depends on the Biot 

number and varies as a function of the fin length. The obtained analytical solution could be 

encouraging from different mathematical and industrial applications' points of view. 

 

 

KEYWORDS: Convective heat transfer; Semi-spherical extended surface; Exact analytical 

solution; Mathieu's equation. 

 

 

INTRODUCTION 

Extended surfaces or fins are employed to enhance  

the rate of heat transfer to or from the surrounding  

medium [1]. Indeed, the fins are employed for the removal 

of waste heat or enhance the heat transfer to another 

medium or to the environment, especially by convection 

heat transfer. Convective heat transfer utilizes the forced 

or free motion of a fluid.  

Thus far, several types of fins such as triangular, 

rectangular, circular, and spherical fins are used in many 

industrial applications such as chemical processing  

 

 

 

equipment, aerospace, and electronic components.  

For instance, pin fins and fined tubes are commonly used 

in electronic devices, power transformers, and petroleum 

industries, especially due to their high surface area, ease  

of construction and mathematical modeling. However,  

as the rate of convective heat transfer depends on the 

temperature gradient, the surface area of the fin, and the heat 

transfer coefficient, there is a growing demand for an optimal 

design of fins. Therefore, with the aim of the search  

for the best performing extended surface, the thermal analysis  
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of plate, semi-circular and Rhombus shape pin fins  

was analyzed by different researchers [2-5]. In line with 

previous studies on fins with non-uniform cross-section, 

semi-spherical fins (Fig. 1) are also considered by several 

authors [6-8]. Nevertheless, most previous studies on heat 

transfer in fins with complex geometry give only 

numerical or approximate solutions for the governing 

equations. While, exact analytical solutions are definitely 

more accurate and valuable than numerical or approximate 

solutions [9]. Nonetheless, in most cases, it is very difficult 

or even impossible to obtain an exact analytical solution 

for differential equations of conductive heat transfer fins, 

especially for a non-linear or noncanonical form  

of the differential equations. Even with one nonlinear term, 

the equation is not amenable to an exact analytical 

solution. Consequently, most previous studies have been 

based on numerical techniques or approximate methods 

such as perturbation homotopy method [10] for more 

realistic problems. Since the exact analytical solutions are 

reliable, they will be useful for validating numerical  

and experimental results. Furthermore, for any changes  

in the input parameters of a given equation, the numerical 

procedure has to be repeated. This can be quite a time 

consuming especially when there is a need for high 

accuracy by increasing the step size of the calculations.  

Moitsheki [11] studied different types of radial fins  

and provided exact solutions to observe the thermal 

performance of the fins. Unal [12] used an analytical 

solution to obtain temperature distribution of straight 

rectangular fin with temperature-dependent internal heat 

generation and heat transfer coefficient. Ganji and 

Dogonchi [13] conducted an analytical investigation on 

heat convective transfer in longitudinal fin with 

temperature-dependent thermal conductivity and heat 

source. They obtained temperature distribution in the fin 

by using the Differential Transformation Method (DTM). 

In another study, DTM was used for predicting the 

performance of convective straight fins with temperature-

dependent thermal conductivity by Joneidi et al. [14]. 

Rahimi Petroudi et al. [15] employed the homotopy perturbation 

method (HPM) for the convective rectangular porous fin 

to obtain an approximate solution. Jing Ma et al. [16] 

considered a rectangular porous fin with a temperature-

dependent convective heat transfer coefficient. They used 

the Spectral Collocation Method (SCM) and compared 

their results with HPM and Finite Volume Method (FVM) 

to verify the results. Ganji et al. [17] determined 

temperature distribution for annular fins with temperature-

dependent thermal conductivity by using HPM. 

Turkyilmazoglu [18] conducted an exact solution to heat 

transfer in straight fins of varying exponential shape  

with temperature-dependent thermal conductivity and 

convection heat transfer coefficient. Atouei et al. to predict 

the temperature distribution in convective-radiative semi-

spherical fins with temperature-dependent properties used 

collocation method and compared their results with the 

Least Square Method (LSM) and numerical solution [6]. 

Recently Patel and Meher [19, 20], proposed ADSTM 

which is a combination of the Adomian Decomposition 

Method and Sumudu transform method. They obtained 

temperature distribution and fin efficiency for a convective 

longitudinal fin with internal heat generation and porous 

fin with different fractional-order values. Also, Patel  

and Meher [21, 22] investigated the temperature 

distribution in the rectangular porous fin and convective-

radial fin with temperature-dependent thermal 

conductivity. They applied ADSTM to obtain thermal 

performance and ultimately compared their results  

with numerical solution outcomes. 

Hatami et al. [7] studied fully wet semi-spherical 

porous fins and also investigated the effects of porosity, 

Rayleigh, and Lewis number on the performance of the fin. 

Sabbaghi et al. [8] considered a semi-spherical fin with 

simultaneous heat and mass transfer and used an analytical 

method to observe the efficiency of the fin. 

The present paper provides an exact analytical solution 

for the governing differential equation of a semi-spherical fin. 

For this purpose, after a variable change on the differential 

equation, the exact solution has been obtained. Also, the 

governing differential equation was solved by two different 

numerical methods, namely Richardson extrapolation and 

finite difference methods. Finally, the exact analytical 

solution was compared with the numerical solution. 

 

PROBLEM DESCRIPTION AND GOVERNING 

EQUATIONS 

As shown in Fig. 1, a semi-spherical fin with radius R 

was considered lump in polar directions (zenith and 

inclination angle) and it was assumed that the heat 

conduction occurs in the other direction. The fin was assumed 

to be isotropic type and therefore the thermal conductivity 

k was assumed to be constant. 
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Fig. 1: Schematic representation of conduction and convection 

heat transfer in a semi-spherical fin. 

 

Using Fourier’s law of conduction, the energy balance 

at the steady-state condition can be written as follows [6]: 

   
x x d x

d T d T
  k A x k A x  

d x d x


                                        (1) 

   h P x d x T T 0   


   

where, A(x) and P(x) are the differential element area 

and pyramid, respectively:  

   
2 2

A x R x                                                               (2a) 

 
2 2

P x 2 R x                                                             (2b) 

Taylor expansion of the second term of Eq. 1 gives: 

   
x d x x

d T d T
k A x k A x  

d x d x


                                       (3) 

 
x

d d T
k A x d x

d x d x

 
  

 

 

Omitting the higher terms than the second term in Eq. 

3 and inserting in Eq. 1, gives the following governing 

equation: 

   

2

2 2 2 2

2

d T d T 2 h
R x 2 x R x T T 0  

d x kd x


            (4) 

The following boundary conditions can be considered: 

Case i) Insulated tip: 

B.C.1)    b
T x 0  T                                                 (4a-i) 

B.C.2)  
x R

d T
0  

d x


                                                    (4b-i) 

Case ii) Constant temperature at the tip: 

B.C.1)    b
T x 0  T                                                 (4a-ii) 

B.C.2)   T x R fin ite                                            (4b-ii) 

Eq. 4 was non-dimensionalized using the following 

dimensionless parameters:  

b

T T x h R
    ,        ,   B i       

T T R 3k






    


                            (5) 

 
2

2 2

2

d d
1 2 6 B i 1 0  

dd

 
        



                            (6) 

It follows that ξ=±1, ꝏ are regular singular points  

and all other finite values of ξ are ordinary points of Eq. (6). 

The non-dimensionless boundary conditions are as follow: 

 ( 0 ) 1 , ( 1) fin ite                                             (7) 

To resolve the singular point issue, the second 

boundary condition can be written as follows: 

1

 
d

0
d

 





                                                                          (8) 

This means that the tip of the fin is assumed to be 

insulated as previously used by many authors [23-25]. 

 

ANALYTICAL SOLUTION 

Exact analytical solution  

Different exponential and triangular transformation 

functions were tried to obtain an ODE with possible 

analytical solutions. The following variables heuristically 

were chosen to simplify the governing equation (Eq.(6)): 

 
 

Y
sin   ,     

co s
    


                                                     (9) 

By substitution of the aforementioned variables in Eq. (6), 

the differential governing equation and the boundary 

conditions becomes as follows: 

 

2

2

d Y
1 6 B i c o s ( ) Y 0

d

    



                                            (10) 
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Y ( 0 1 )                                                                       (10a) 

2

Y

d
 

d
(1)


 

  


                                                            (10b) 

The general periodic solution to Eq. (10) can be found 

by using Taylor expansion for cos (φ) and substituting the 

following trial solution: 

 n n

n 0

Y A co s( n ) B s in ( n )  





                                         (11) 

or 

n r

n

n 0

 Y A






                                                                  (12) 

By substituting Eq. 12 into Eq. 10 and making  

the coefficient of each function identically equal to zero, 

the following recursion relation was found for A2k and A2k+1: 

2 k 2 k 1

1 2 k 2 2 k 1

k 0 k 0

Y C A C A  

 




 

                                (13) 

where  

0

1

2

2

2 3

3

A 1

A 1 2 B i 2

2
A 1 2 B i 2 4 B i

3

4 8 8 3 2
A B i 3 2 B i

 

B i
4 5 1 5 5



 

  

    

 

2 k n

2 k m C

k 0 k 0

2 k 1 n

2 k 1 m S

k 0 k 0

1
A A c o s ( m / 2 ) M ( 4 ,1 2 B i, )

2

1
A A s in ( m / 2 ) M ( 4 ,1 2 B i, )

2

 

 

 




 

    

    

 

 

 

Where, m and n are odd or even numbers and MC  

and MS are Mathieu functions [26, 27]. Therefore,  

the analytical solution for the governing equation (Eq. (6)) 

is as follows: 

1 C 2 S

1 1
Y ( ) C M ( 4 ,1 2 B i, ) C M ( 4 ,1 2 B i, )

2
 

2
                (14) 

or

 

1

C

2

1
M 4 ,1 2 B i, s in ( )

2
( )

1

 
 

 
   

 

                                  (15) 

1

C S

2

S

1
2 (1) M 4 ,1 2 B i, M 4 ,1 2 B i, s in ( )

4 2

M 4 ,1 2 B i, 1

 

4

     
      
    

 
   
 

 

Where, 
C

M   and 
S

M   are the MathieuPrime or  

the derivatives of Mathieu functions. To obtain θ(1), t 

he second boundary condition (i.e. 
1

0
d

d







 ) can be 

applied.  

C S

S

M 4 ,1 2 B i, M 4 ,1 2 B i,
4 4

(1)

2 M 4 ,1 2 B i,
4

    
   

   
  

 
 
 

                 (16) 

C

1
M 4,1 2 B i,

2 4

 
  
 

 

Therefore, the following single solution can be 

obtained: 

1

C

2

1
M 4 ,1 2 B i, s in ( )

2
( )

1

 
 

 
   

 

                                (17) 

1

C S

2

S

1
M 4 ,1 2 B i, M 4 ,1 2 B i, s in ( )

4 2

1M 4 ,1 2 B i,
4

   
   

   

   
 
 

 

Although the value of θ(1) can be achieved from  

Eq. 16,  it was solved for different values of Bi number  

and the following simple relationship was obtained  

by curve fitting: 

 

 

p

q

1 m B i
(1)

1 n B i


 



                                                           (18) 

where m=0.051315, n=1.254745, p=-9.32588, and 

q=1.207541, and the regression coefficient (R2) is 

0.9999998. 

 The transferred heat from the base of the fin  

can be calculated from the following formula: 
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x 0

d T
q k A

d x


                                                                           (19) 

or in the dimensionless form: 

C

0
S

1
M 4 ,1 2 B i,

d ( ) 1 4
Q

1d 2
M 4 ,1 2 B i,

4

 

 
 

   
 

  
 

 

                                 (20) 

The fin performance can be calculated as follows: 

 

C

f b
S

1
M 4 ,1 2 B i,

q 1 4

1h A T T 8 B i
M 4 ,1 2 B i,

4



 
 

 
  

  
 

 

                    (21) 

where Af is the fin surface area and  
0

lim 1
B i




 . 

 

Numerical analyses 

To compare the exact analytical solution with the 

numerical solution, the finite difference method 

(h=0.0001) and Richardson extrapolation (Midrich) [28] 

were employed. Midrich method is a midpoint method that 

is used for solving linear boundary value problems (BVPs) 

and it can handle end-point singularities [29, 30].  

For Midrich method the following formulas were used: 

 
p p 1

(h ) k h O h


                                                     (22) 

 

 
p

N u m . p

h
2 h

2

2 1

 
   
 

  



                                                (23) 

where θ(h) and θ(h/2) are the approximate value  

for θ(ξ) given by the finite difference method with step 

sizes of h and h/2, and p=2. Also, the governing differential 

equation was discretized by the finite difference method 

and the nonlinear equations system was solved  

by Newton’s method.  

 

RESULTS AND DISCUSSION  

Exact Analytical solution 

The heat transfer governing equation (Eq. 6) is a 

boundary value problem (BVP) with three finite regular 

singular points at -1, 1, and ∞. On the other hand, the point 

at ξ =1 belongs to the boundary condition as well. 

However, as the boundary condition at the regular singular 

point (ξ =1) is specified by the normal derivative of  
 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2: Effect of Bi number on temperature distribution in the 

fin obtained from the analytical solution. 

 

the function on a surface, the constants of the answer  

were determined with no problem. It is worth mentioning 

that the solution was obtained by power series (i.e. Mathieu) 

around zero, therefore, it is anticipated to be more accurate 

near zero with fewer terms of the series.  

The constant Bi in Eq. 6 and the solution represents  

the Biot number, the ratio of the heat transfer resistance 

inside of a body to the heat transfer resistance between  

the surroundings and the surface of the body. The Bi 

number is defined as the following: 

c
h L

B i
k

                                                                          (24) 

Where Lc is the characteristic length of the object of 

study and defined as the volume of the body divided  

by the surface area of the body. For a spherical body Lc= R/3. 

Temperature distribution at different Bi numbers  

was obtained from the exact analytical solution and 

presented in Fig. 2. Obviously, by increasing the Bi 

number the rate of heat transfer increases, which is in good 

agreement with the results reported by Atouei et al [6].  

As can be seen in Fig. 2, a small Bi number leads  

to very low-temperature gradients or a uniform 

temperature distribution throughout the fin, implying low 

resistance to transmission by conduction. Therefore,  

at small values for Bi numbers, the fin can be assumed  

to be a lumped system. However, at large Bi numbers,  

the temperature gradient is considerable. 
 

Numerical solutions  

Richardson extrapolation  

To solve the ODE numerically, different approaches 

were carefully chosen. In between, midpoint method 


(
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Fig. 2: Effect of Bi number on temperature distribution in the fin obtained from the analytical solution. 

 

with Richardson extrapolation (Midrich) and finite 

difference method could be employed successfully. 

Midrich method can work for ODEs with end-point 

singularities [31, 32]. Fig. 3 shows the temperature 

distribution obtained by Richardson extrapolation and 

finite difference methods. Results revealed that these 

solutions follow the same trend as the exact analytical 

solution. 

As can be seen in Fig. 3, at small values of Bi the 

difference between the analytical and numerical methods 

is remarkable, while at large Bi values it the error levels 

off. in the ODE the absolute error is a function of the last 

term coefficient of the ODE (here the Bi number). Since 

the ODE is singular at the right endpoint, it was impossible 

to use the trapezoidal method when the coefficient of the 

last term in the differential equation (i.e. Bi) was too small. 

However, the midpoint method could be useful at a bit high 

value of the last term coefficient. Anyhow, to achieve  

a numerical solution for the BVP, the absolute error  

was increased, this inserts a huge error in the solution. 


(

 

) 
1 

 
0.95 

 
0.9 

 
0.85 

 
0.8 

 
0.75 

 
0.7 

 

0               0.2            0.4            0.6             0.8              1 


(

 

) 

1 

 
0.8 

 
0.6 

 
0.4 

 
0.2 

 
0 

 

0               0.2            0.4            0.6             0.8              1 


(

 

) 

1 

 
0.8 

 
0.6 

 
0.4 

 
0.2 

 
0 

 

0               0.2            0.4            0.6             0.8              1 


(

 

) 

1 
 

0.9 
 

0.8 
 

0.7 
 

0.6 
 

0.5 
 

0.4 

 
0.3 

 

0               0.2            0.4            0.6             0.8              1 


(

 

) 

1 

 
0.8 

 
0.6 

 
0.4 

 
0.2 

 
0 

 

0               0.2            0.4            0.6             0.8              1 



Iran. J. Chem. Chem. Eng. Nematollahzadeh A. & Jangara H. Vol. 40, No. 3, 2021 

 

986                                                                                                                                                                  Research Article 

Table 1: Comparison of the exact analytical solution with numerical analysis for Bi=10. 

 Exact Solution (θ(ξ)Exa.) Richardson Extrapolation (θ(ξ)Num.) E
R

 Finite difference method (θ(ξ)Num.) E
R 

0 1.000 1.000 
0.00 

1 
0.00 

0.1 
0.46732 0.46463 0.58 0.4682 0.19 

0.2 
0.22042 0.21677 1.66 0.2184 0.92 

0.3 
0.10464 0.1012 3.29 0.102 2.52 

0.4 
0.04989 0.04713 5.53 0.0475 4.79 

0.5 
0.02384 0.02178 8.64 0.022 7.72 

0.6 
0.01142 0.01004 12.08 0.0101 11.56 

0.7 
0.0055 0.00461 16.18 0.0046 16.36 

0.8 
0.00269 0.00206 23.42 0.0021 21.93 

0.9 
0.0014 0.00095 32.14 0.000956 31.71 

1.0- 0.00092 0.00055 39.37 0.00055 40.25 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Temperature distribution contour Bi- plot for semi-

spherical fin at dimensionless temperatures. 

 

Temperature distribution in the fin at different Bi 

numbers is shown in Fig. 4. The results showed that at high 

Bi numbers there is a large temperature gradient between 

the base (ξ =0) and tip (ξ=1) of the fin and the rate of heat 

transfer is higher in comparison with relatively small Bi 

numbers. It means that for small Bi numbers,  

the temperature gradient is small and when Bi=0  

the temperature gradient approaches zero or there is no 

temperature difference between the base and tip of the fin.  

 

Comparison of the exact solution with the numerical 

solutions  

To validate the exact analytical solution of the 

differential equation the results were compared with  

the Richardson extrapolation and finite difference method 

results. Also, the relative error was calculated through  

the following formula and presented in Table 1.  

 
   

 

E x a . N u m .

R

E x a .

E 1 0 0

    

   
 

                           (25) 

The results show that the employed numerical methods 

result in a larger error in comparison with the exact 

analytical method.  

As can be seen in Table 1, the relative error between 

the exact analytical solution and different numerical 

methods are quite similar. As mentioned before, this 

similarity happens at large values of Bi number. However, 

the error increases by increasing ξ and reaching the tip of 

the fin (Fig. 5). The increase in the error is anticipated as 

ξ=1 is a regular singular point. Therefore, the answer  

was determined at a close neighbor to the tip of the fin  

at ξ= 0.99999999999. Also in Fig. 5 error residuals  

(i.e. |θExa.- θNum.|) are plotted at different Bi numbers. Along 

the fin length the error residuals increase. However, there 

is not an especial trend between the error residuals and 

order of Bi numbers. 

To better elucidate the error between the analytical and 

numerical methods, the relative error percentages at the tip 

of the fin (at ξ=1), where the error is the highest,  

were plotted versus Bi number (Fig. 6). A decay equation 

(Eq. (21)) was well fitted to the data with a high regression 

coefficient of R2=0.9998. As can be seen in Fig. 6 the relative 

errors increase exponentially at least up to Bi=10.  
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Fig. 5: Error residuals along the fin at different Bi numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Relative error at the tip of the fin versus Bi number. The 

dashed line shows the fitted curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Transferred heat from the fin and the error residual between the analytical and numerical method  

(central difference with h=10-5) (A), and the fin performance (B). 
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The transferred heat from the fin and the fin 

performance was calculated through the analytical  

Eqs. (20) and (21), and using central finite difference with 

4th order accuracy with a uniform grid spacing of 10-5.  

The results are plotted versus Bi and shown in Fig. 7.  

As can be seen in Fig. 7, the error residuals increase rapidly 

then decrease to lower values.    

In this study, convective heat transfer in a semi-

spherical fin was investigated. Hence, the linear 

differential equation of energy balance with singularities 

at the end-point on the semi-spherical fin was considered 

and an exact analytical solution was successfully obtained 

to analyze the temperature distribution along the fin.  

To verify the solution, Richardson extrapolation which  

is a midpoint method appropriate for end-point singular 

boundary value problems, and also finite difference 

method were employed. It was shown that the relative 

error between the analytical and numerical solutions 

depends on the Biot number. Furthermore, for the 

temperature distribution, the results revealed that the error 

is small close to the base of the fine and exponentially 

increases approaching the tip of the fin. While,  

the transferred heat and fin performance results showed 

that there is a large error close to the base of the fin. Since 

generally, an exact analytical solution is more accurate, 

reliable, and easy to use, the solution can be quite 

encouraging from different applications and mathematical 

points of view.  
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h                                      Heat transfer coefficient (W/ m2K) 

k                                        Thermal conductivity (W/ mK) 

m, n, p, q                                                              Constants 

MC, MS                                                      Mathieu functions 

P                                       Differential element pyramid (m) 

q                                                     Heat transfer flux (W/m) 

Q                                        Dimensionless heat transfer flux 

R                                                                     Fin radius (m) 

r                                                                            Radius (m) 

T                                                                 Temperature (oC) 

Tb                                                 Fin base temperature (oC) 

Tinf                                                Ambient temperature (oC) 

                                                     Dimensionless temperature 

x                                                                           Fin direction 

Y                                                       Transformation function 

                                                        Dimensionless distance 

                                                                                  Angle 

                                                                   Fin performance 
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