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ABSTRACT: Equilibrium ratios for the mixture of different components are very important for many 

engineering application processes. Different numerical methods were explored and applied to ensure 

efficient estimation of gas-liquid equilibrium ratio. In this paper, the Artificial Neural Network (ANN) 

approach along with data of experiments performed on 25 gas condensate reservoirs has been utilized 

to obtain a relationship of gas-liquid equilibrium ratios in gas condensate reservoirs. The relationship 

between the gas-liquid equilibrium ratio and parameters of components of a mixture (critical 

temperature, critical pressure, and acentric factor) has been derived. Finally, the results of ANN  

have been compared to the proposed correlations in the literature and results of the equation of state. 

This investigation demonstrated that the result of ANN is more precise than the equation of state and 

existing empirical correlations. Whereas comparison between experimental data of 3 gas condensate 

samples by ANN, EOS, and existing empirical correlation show that the average absolute error  

for ANN was between 7.82 to 13.74% and for others was between 29.99 to 94.99%. 
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INTRODUCTION 

Design of different parts of production system  

(e.g., distillation column, flow lines, separators) requires 

fluid phase behavior calculations at equilibrium conditions 

which is mainly addressed by equilibrium ratio concept. 

The equilibrium ratio of the ith component (Ki) in a mixture  

 

 

 

is defined as the ratio of the fraction of the ith component 

in the vapor phase to that in the liquid phase, at vapor-

liquid equilibrium (E. (1)) [1]. 

𝐾𝑖 =
𝑦𝑖

𝑥𝑖
                                                                              (1) 
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Where yi and xi are the mole fractions of component i 

in the phases vapor and liquid respectively. 

The equilibrium ratio of a real solution is a function  

of temperature (T), pressure (P), and composition of  

the system (Zi). Many methods have been proposed to predict 

the equilibrium ratios of hydrocarbon mixtures, the limits 

of these methods, is variable from a simple mathematical 

formula, to complex formulations, each of which has 

several associated dependent variables. In 1968, Wilson 

proposed an equation for predicting an equilibrium ratio  

at low pressures [2]. Equilibrium ratios calculated  

with Wilson equation are more accurate at lower pressures. 

𝐾𝑖 =
𝑃𝑐𝑖

𝑃𝑡
𝑒𝑥𝑝 [5.37(1 + 𝜔𝑖) (1 −

𝑇𝑐𝑖

𝑇
)]                            (2) 

Where Pt is absolute total pressure, T is absolute 

system temperature, ω is the acentric factor, and Tc and Pc 

are the absolute critical temperature and pressure 

respectively. 

Standing [3] obtained a set of equations related  

to equilibrium ratio data of Katz and Hachmuth [4]  

at pressures less than 1000 psia and temperatures below 

200 °F. Other researchers have been worked on equilibrium 

ratio of vapor-liquid equilibrium [5-8]. In the SRK 

equation [9], Giorgio Soave modified Redlich-Kwong 

equation of state applied for multi-component vapor-liquid 

equilibrium calculations. The Peng-Robinson equation [10] 

improved the ability of the SRK state equation for 

predicting the specific fluid mass, and other fluid 

properties, especially around the critical zone. 

The field of neural network has, like any other field  

of science, a long history of development with many ups 

and downs. Waren Mcculloch and Walter Pitts (1943), 

introduced models of neurological networks, based on 

neurons and showed that even simple networks of this kind 

are able to calculate nearly any logic or arithmetic 

function.  [11]. Donald O. Hebb formulated the classical 

hebbian rule which represents in its more generalized form 

the basis of nearly all neural learning procedures. [12]. 

Artificial Neural Networks (ANNs), have been utilized  

in many studies for estimation of rock uniaxial compressive 

strength for an Iranian carbonate oil reservoir [13], 

modeling the effect of oxygenate additives on the 

performance of Pt-Sn/.-Al2O3 catalyst in propane 

dehydrogenation [14], Kinetic modeling of Oxidative 

DeHydrogenation of Propane (ODHP) over a vanadium-

graphene catalyst: Application of the DOE and ANN 

methodologies [15] as well as Investigation of the 

Oxidative Dehydrogenation of Propane Kinetics over a 

Vanadium-Graphene Catalyst Aiming at Minimizing of 

the COx Species [16], also due to their high ability  

of non-linear mapping, generalization, self-learning and 

self-organization, have been proved to be of widespread utility 

in engineering and are steadily advancing into new areas [17–26]. 

In petroleum engineering, neural networks have been  

used to predict porosity, permeability, determine facies, 

and zones identification [27-30], and to predict  

the water saturation [31 and 32]. Currently, neural network 

has been widely used in fields of reservoir and geotechnical 

engineering [33-58].  

Despite the existence of different methods for 

prediction of equilibrium ratio, including empirical 

correlations, Equation of State (EOS), and combination of 

equation of state and fluid theory, application of each 

method depends on the conditions of system under 

consideration. Although experimental measurements are 

desirable, they are expensive and time-consuming. In this 

paper, the artificial neural networks and experimental data 

of gas-liquid equilibrium ratios for 1000 spots in gas 

condensate reservoirs have been used to estimate  

the equilibrium ratios of unknown reservoirs. 

 
EXPERIMENTAL SECTION 

In gas condensate reservoirs, with pressure reduction 

below dew point, the liquid and Gas phases are 

simultaneously in equilibrium. Here, the material balance 

calculations have been conducted on the fluid components, 

in order to obtain the composition of the liquid and gas 

phases at various stages of Constant Volume Depletion (CVD) 

test, and the equilibrium ratio values are obtained 

experimentally by using Eq. (1), for pressure stages under 

dew point pressure and at reservoir temperature. Experimental 

data of 25 Iranian gas condensate reservoirs (totally 1000 

experimental data point from the CVD test) have been used 

in the neural network procedure.  The CVD tests have been 

performed using the visual PVT cell (Vinci Technologies, 

Nanterre, FRANCE). Figs. 1 and 2 show the actual photo 

and Schematic diagram of visual PVT cell which is used 

for all experimental tests. The volume of this cell is one 

liter and has a maximum pressure of 20,000 psi and  

a maximum temperature of 392 ⁰F. The range of GOR  

for these reservoirs changes from 1,150 vol/vol to29,814 vol/vol. 
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Fig. 1: Actual photo of experimental Setup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Schematic Diagram of experimental Setup used  

for CVD experiments. 

 

In this research, the neural networks for different 

components of reservoirs’ fluid has been used to obtain the 

relationship between the gas-liquid equilibrium ratio (Ki) 

with reduced pressure (Pri), reduced temperature (Tri)  

and acentric factor (ωi) for component i of the gas condensate 

reservoir fluid. Also, three gas condensate reservoirs  

have been used for validating the results of neural networks,  

and also for comparison of the results obtained through  

the neural networks, SRK, PR EOS, and Wilson correlation 

(Eq. (2)) [2]. The properties of these reservoirs are briefly 

summarized in Table 1. 

A technical side of FeedForward Neural Network  

is composed of three layers, input, output & hidden layer. 

In this study, a feedforward neural network has been 

designed with Backpropagation (BP) algorithm in which 

each neuron in one layer, has only directed connections  

to the neurons of the next layer (towards the output layer). 

The neurons layer of a feedforward network are separated, 

28 input layers, 8 output layers and 30 processing layers 

also called hidden layer. BP algorithm has problems 

associated through learning procedures, there are various 

solutions to this problem such as reset the weights to 

different random input data and try to retrain the network. 

Another way is to add “momentum” to the weight change. 

The combination of the weights which minimizes the error 

function which considered to be a solution to learning 

problem. Activation function for trained network is  

the Sigmoid as shown in Fig. 3. The network keeps training 

all the patterns repeatedly until the total error falls to some 

pre-determined target value and then it stops. This ANN is 

known for its accuracy as it allows itself to learn and 

improve to reach the target data.  

 
RESULTS AND DISCUSSION 

Reduced pressure (Pr), reduced temperature (Tr),  

and acentric factor (ω) are used as input data to develop  

an ANN model to predict Gas-liquid equilibrium ratios  

(k-value). Experimental data for a gas-liquid equilibrium ratio 
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Table 1: Properties of candidate gas condensate reservoirs. 

Component Unit Case 1 Case 2 Case 3 

H2S mole% 0.01 0.05 2.29 

CO2 mole% 0.89 2.37 6.46 

N2 mole% 0.2 0.1 0.07 

CH4 mole% 85.62 83.97 72.24 

C2H6 mole% 6.85 5.88 4.86 

C3H8 mole% 3.26 2.8 2.48 

iC4 mole% 0.44 0.48 0.62 

nC4 mole% 1.03 1.12 1.43 

iC5 mole% 0.32 0.43 0.54 

nC5 mole% 0.36 0.49 0.64 

C6 mole% 0.38 0.54 1.06 

C7+ mole% 0.64 1.77 7.31 

Molecular weight  of reservoir fluid gr/mole 20.03 21.73 31.27 

Molecular weight of C7+ gr/mole 105.63 118.98 144.02 

Density of C7+ gr/cc 0.737 0.750 0.786 

Dew point at reservoir temperature psia 1900 2850 4790 

Reservoir temperature °F 110 180 239 

Reservoir pressure psia 3000 3033 5700 

Gas oil ratio, GOR SCF/STB 110402 36500 8189 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Artificial Neural Network structu. 
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Table 2: Input and Target data for training of neural network. 

Component 
Input Data Target Data 

Pr Tr ω K-value 

C1 0.330~6.303 1.659~2.035 0.010 1.072~7.671 

C2 0.311~5.945 1.036~1.271 0.098 0.430~2.408 

C3 0.357~6.841 0.855~1.049 0.152 0.225~1.474 

iC4 0.417~7.956 0.776~0.951 0.165 0.152~0.792 

nC4 0.400~7.636 0.744~0.912 0.200 0.156~0.683 

iC5 0.449~8.564 0.687~0.843 0.228 0.053~0.522 

nC5 0.450~8.596 0.674~0.826 0.251 0.083~0.516 

C6 0.455~8.696 0.623~0.765 0.299 0.012~0.427 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Equilibrium ratio values versus reduced Pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Equilibrium ratio values versus reduced temperature. 

 

from a CVD test of 25 Iranian gas condensate reservoirs 

(total of 1000 points) were used to design such a model 

(Table 2, Figs. 4 and 5). 

In the following, the trained neural network model  

has been used to estimate equilibrium ratio for three new 

candidate gas condensate reservoirs with various gas-oil 

ratio (GOR). The GOR values of candidate reservoirs are 

in the range of GOR values for 25 reservoirs which  

have been previously used for training the neural network. 

Fig. 6 shows experimental data of equilibrium ratio for 

various components of reservoir fluid, at different pressure 

stages of CVD test (case 1). These equilibrium ratio values 

were obtained by using the material balance on the Target 

data of CVD test. In order to distinguish the data in a better 

way, the axis of equilibrium ratio was converted  

to a logarithmic scale. 

After training the neural network with 1000 

experimental input data (Figs. 4,5) and obtaining  

the estimated results, in order to validate the results of  

the model, three considered gas condensate reservoirs 

(presented in Table 1) have been used. Equilibrium ratios 

calculated according to Wilson correlation (Eq. (2)) [2], 

SRK and PR EOS for components of hydrocarbon of these 

three considered gas condensate reservoirs. Figs. 7, 8, and 

9 demonstrate the values of equilibrium ratio versus 

pressure according to experimental results, provided 

results of neural network method, EOSs (i.e. PR and SRK), 

and Wilson correlation for methane (C1) component  

in case 1, 2, and 3 respectively. 

According to the analysis represented in Figs. 7–9,  

it can be observed that the ANN model better predicts  

the experimental values of equilibrium ratio (K-value)  

in comparison with the proposed correlation by Wilson and 

EOSs. Also For the better analysis of the data, the error 

value of different methods compared to the experimental 

data for equilibrium ratios in cases 1-3 were calculated. 
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Fig. 6: Experimental equilibrium ratio values for different 

components of case 1 in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: The comparison of experimental values of equilibrium 

ratio of methane versus pressure with predicted values  

by neural networks method, PR and SRK EOS, and Wilson's 

correlation for gas condensate reservoir case 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: The comparison of experimental values of equilibrium 

ratio of methane versus pressure with predicted values  

by neural networks method, PR and SRK EOS, and Wilson's 

correlation for gas condensate reservoir case 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: The comparison of experimental values of equilibrium 

ratio of methane versus pressure with predicted values  

by neural networks method, PR and SRK EOS, and Wilson's 

correlation for gas condensate reservoir case 3. 

 

Fig. 10 indicates the values of average absolute percent 

error and average absolute relative percent error in 

different methods compared to experimental data for case 

1-3 (for all components of gas condensate reservoir fluids). 

Fig. 10 demonstrates that in Iranian gas condensate 

reservoirs when there is lack of experimental data for 

equilibrium ratio, by using ANN, we can obtain better 

results comparing the equations of state and empirical 

correlation for gas-liquid equilibrium ratio. 

EOSs are based on physical phenomena and 

thermodynamic equilibrium concept, subsequently 

different parameters which attain by EOSs may affect 

equilibrium ratio.  Instead ANN relates equilibrium ratios 

to dimensionless properties of fluid components (e.g., Pr, 

Tr, ω). Therefore ANN almost predicts equilibrium ratio 

more precisely from the mathematical point of view. 

 

CONCLUSIONS 

In this investigation, FeedForward neural network 

which is supervised learning method with BP algorithm to 

train the ANN is proposed. The equilibrium ratio in gas 

condensate reservoirs was predicted by simple empirical 

correlation, Equations of State (EOS), and neural network 

method. Experimental data of wide range of gas 

condensate reservoirs, with a various Gas Oil Ratio (GOR) 

has  been  used  in  the  ANN  model.  The  results  of  ANN 
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Fig. 10: The average absolute percent error and average absolute relative percent error of equilibrium ratio  

for different methods of cases 1-3. 

 

have predicted the equilibrium ratio for different 

components, more precise than the equations of state, 

and existing empirical correlation, and it can be 

presented as a new database which can predict  

the values of gas-liquid equilibrium ratio for similar gas 

condensate reservoirs better and more accurate. 

According to Fig. 10, quantitatively comparison 

between experimental data of 3 gas condensate samples 

by ANN, EOS, and existing empirical correlation show 

that the average absolute error for ANN was between 

7.82 to 13.74% and the average absolute relative error 

was between 11.42 to 20.06%;conversely for other 

methods these errors are between 29.99-94.02%  

and 43.11-99.55% respectively. 
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