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ABSTRACT: As the core energy source of electric vehicles, power batteries directly restrict             

the development of electric vehicles. Accurate estimation of SOC is not only the fundamental function 

of the electric vehicle battery management system but also helps to improve energy utilization                

of batteries, safeguard the application of batteries in EVs, and extend the cycling life. However,          

the time-varying nonlinearity, environmental sensitivity, and irreversible decay during the use of       

the battery make the estimation of hidden states such as SOC a challenge to the industry. This study 

conducted the following research on the SOC and capacity estimation of lithium-ion batteries:            

(1)    To achieve the co-estimation of the battery’s state and parameters, an adaptive cubature Kalman 

filter SOC estimation method based on random weighting (ARWCKF) is proposed, at the same time, 

Extended Kalman Filter (EKF) is used to identify the parameter on-line. The results verify that this 

approach has a better performance with the error of SOC being under 3%. (2) Aiming at the 

limitations of the single-time-scale joint estimation algorithm, taking accumulated discharge as the 

conversion standard between micro and macro time scales. The filtering performance of the algorithm 

is effectively evaluated based on the prediction accuracy of the terminal voltage, SOC, capacity, and 

the convergence rate of SOC and capacity, verifying that compared to the single-time-scale approach, 

this approach has better robustness and accuracy. 
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INTRODUCTION

SOC is usually used to measure the remaining 

available capacity of power batteries quantitatively and is 

one of the most important parameters of electric vehicles. 

Related studies show that the electrochemical reaction 

process, impedance parameters, and external characteristic  

 

 

 

parameters of power battery vary greatly in different SOC, 

so it is necessary to determine the value of SOC when 

analyzing the internal and external characteristic parameters 

of power battery [1-3]. Furthermore, a series of battery 

management strategies, such as battery charge-discharge  
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control, health state estimation, and fault diagnosis are 

inseparable from accurate SOC estimation. Constituting     

a reasonable battery management strategy is helpful to 

prolong battery life, preventing battery over-discharge   

and improving battery safety factors [4,5]. Accurate SOC 

estimation also contributes to the optimization of vehicle 

energy management strategy, to the greatest extent 

improving energy efficiency and increasing driving 

mileage as much as possible [6]. But at the same time, due 

to the complexity and variability of the battery's internal 

structure and electrochemical reaction, and the uncertainty 

of the actual operating conditions, it is difficult to 

accurately estimate stealth state quantities of SOC in real-

time [7-9]. In addition, battery capacity as an important 

indicator to measure battery aging and health status is         

as important and closely related as SOC. But the battery 

capacity is not a fixed value, which is closely related           

to the using conditions and aging status of the power battery.  

The co-estimation of SOC and capacity is based on the 

external charge-discharge characteristics of the power 

battery. At the same time, using the relationship between 

SOC and capacity, the mutual correction between SOC and 

capacity is realized based on the same error feedback 

information, so as to improve the prediction accuracy         

of SOC and capacity. Gregory L Plett et al. realized the 

co-estimation of SOC and capacity based on the double 

extend Kalman filter (EKF) algorithm for the first time  

and formed a closed-loop feedback structure between 

capacity estimation and SOC estimation, which laid         

the groundwork for subsequent joint battery state 

estimation research [10]. Lee analyzed the relationship 

between battery aging and OCV-SOC curve in detail, and 

improved the OCV-SOC curve, so as to solve the failure 

problem of the double EKF algorithm to estimate available 

capacity caused by battery aging [11]. However, due to the 

complexity and variability of the battery's internal structure 

and electrochemical reaction, and the uncertainty of the actual 

operating conditions, it is difficult to accurately estimate 

stealth state quantities of SOC and capacity in real-time [7-9]. 

In recent years, filtering methods were improved 

constantly in the state estimation area, and a large number 

of scholars have fused equivalent circuit models with 

Kalman Filter to update battery states. Such as the 

Cubature Kalman Filter (CKF), which is commonly used 

in the field of the non-linear filter. Compared with the 

unscented Kalman Filter (UKF), it uses the third-order 

spherical-radial volume criterion to approximate the 

probability density function, and the weights of the 

sampling points are the same and are positive, so its 

numerical value stability and filtering accuracy are higher 

than UKF [12,13]. The reference [14] proposed square root 

cubature Kalman filter (SCKF), which iterates the square 

root of the error covariance matrix, so ensures the 

symmetry and non-negative definiteness of the covariance 

matrix, and finally improves the filtering accuracy of        

the system. However, CKF also requires accurate priori 

statistical information of known measurement noise, and 

the filtering accuracy will decrease or even diverge when 

there is uncertainty in the statistical characteristics of 

measurement noise. In order to solve this problem, the 

reference [15-17] improves the CKF based on the moving 

windowing method to obtain an adaptive ASCKF 

algorithm, which estimates and adjusts the statistical 

characteristics of the measurement noise in real-time with 

the help of the moving windowing technique. However, 

because the ASCKF algorithm takes the same weight 1/n 

to the information at different times in the window and 

ignores the difference in the contribution of the 

information at different times, it can’t accurately estimate 

the statistical characteristics of the measurement noise, 

which has a certain impact on the filtering accuracy.           

In addition, with the development of various algorithm 

technologies, data-based machine learning methods have 

been increasingly applied to SOC estimation. Mahmood et al. 

reviewed the basics of machine learning and common 

procedures for applying machine learning [18-19], which 

provide a theoretical basis and option for SOC estimation 

algorithms. While the method of machine learning relies 

heavily on model data, how to meet a large number of data 

requirements in actual operation is a difficult problem that 

needs to be solved. 

This dissertation takes the power battery management 

system of an electric vehicle as the research object and carries 

out related research on the state estimation of power batteries 

at different times. The 1-order RC model with high model 

accuracy and moderate model complexity is selected as the 

model basis, and then the improved cubature Kalman filter 

algorithm is used to realize the real-time SOC estimation.        

In view of the influence of capacity on SOC estimation,             

a more robust co-estimation method of variable-time-scale 

SOC and capacity is proposed. The accuracy and timeliness of 

the proposed method  are  verified,  which  is  of  great  significance  
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Fig. 1: Algorithm Schematic of EKF-CKF Filter. 

 

to ensure the stability and safety of electric vehicles during 

the actual operation process. 

 

EXPERIMENTAL SECTION 

The proposal for EKF—CKF filtering 

Considering that there is no effective feedback 

correction between parameter identification and state 

estimation in the traditional Kalman filtering process 

based on online parameter identification, this dissertation 

proposes the EKF-CKF filtering theory, therefore, in this 

dissertation, the EKF filter is used for the online 

identification of the model parameters, and the CKF filter 

is used for the real-time state estimation of the system.    

The process of parameter identification and state 

estimation is modified by the same observation equation 

respectively, which realizes the co-convergence process              

of the state and parameters, and improves the stability                    

of the algorithm. Next, the EKF-CKF algorithm is described in detail.  

Establish a non-linear discrete system as follows:  

k k 1 k 1 k 1 k 1

k k 1 k 1

k k k k k

x f ( x , , u ) w

y g ( x , , u ) v

   

 

  

    

  









    (1) 

Where, f(xk,uk) and g(xk,uk) respectively represent the 

state transfer function and observation function of               

a non-linear system; xk represents the state vector                  

at k-moment, yk represents the observation at k-moment; 

θk represents the parameter matrix at k-moment; process 

the noise of the parameter equation at k-moment is 𝜌k,     

and its statistical characteristics are unknown and 

unlimited. In this dissertation, the upper right corner is unified 

and used to distinguish between the state estimation process 

and the parameter identification process, that is to say, 𝑃𝑘
𝑥 

represents the state estimation process and 𝑃𝑘
𝜃  represents the 

parameter identification process.  

After completing the above basic work, the principle of 

the EKF-CKF filtering algorithm established in this 

dissertation is shown in Fig 1, and the concrete algorithm 

steps are as follows. 

Algorithm initialization: parameter initialization of 

parameter observer EKFθ and state observer CKFx 

x x x

0 0 0 0 0 0 0 0
, P , Q , R , x , P , Q , R

  

      (2) 

In which, 𝜃0, 𝑃0
𝜃 , 𝑄0

𝜃 , 𝑅0
𝜃 respectively represents the 

parameter initial value of parameter observer EKFθ, the 

initial value of covariance matrix of parameter estimation 

error, the initial value of system process noise, and             

the initial value of observation noise; 𝑥0, 𝑃0
𝑥 , 𝑄0

𝑥 , 𝑅0
𝑥 

respectively represents the initial value of the CKFx state 

of the state observer, the initial value of the covariance 

matrix of the state estimation error, the initial value of      

the system process noise, and the initial value of the 

observation noise; 

Step 1: Priori estimation of parameters-𝜃̂𝑘
− 

,
k k 1 k k 1 k 1

, P P Q


   
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Step 2: Priori estimation of state-𝑥̂𝑘|𝑘−1
−  

kk -1 k -1k k -1 k k -1
x f ( x , , u , ) , x


      (4) 

m x

k 1k k -1
i 1

1
x q

m




  

m xT ,
x T

k 1k k -1 k k -1 k k -1 k k -1
k k -1 i 1

P (1 m ) x x x x Q
 




     (5) 

Step 3: Posteriori estimation of state-𝑥̂𝑘|𝑘−1 

Innovation matrix: 

x

k 1
k

m
x

, ,kk kk k -1

i 1

1
e y h ( x u ) r

m






 
    

 
    (6) 

Gain matrix: 

m T
x T

k k -1
k k k -1 k k -1

k k -1i 1

K (1 m ) x y x y



 
   
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1
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System status correction: 

x x
k k k 1

k k
x x K e



       (8) 

Error covariance correction: 

x x

k k k 1
P P


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Step 4: Posteriori estimation of parameters -𝜃̂𝑘  

Innovation matrix: 

k

m

, ,kk kk k -1

i 1

1
e y h ( x u )

m






 
   

 
                 (10) 

Gain matrix: 

   
1

T T
, ,

k k k k k k k 1
K P C C P C R



        



 
  

 
               (11) 

System parameter correction: 

k k k k
K e


 

                      (12) 

Covariance update of system parameter estimation 

error: 

 
,

k k k k
P I K C P
    
                   (13) 

k k k k k k

k
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C

d


  

  
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               (14) 
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g ( x , , u ) d x

x d
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k k 1 k k 1 k k 1

k 1

d x f ( x , u , ) f ( x , u , ) d x

d x d

  



   
 

    
 

In addition, in the process of calculating 𝐶𝑘
𝜃, it is 

necessary to solve the partial derivative of the state 

quantity concerning the number of parameters. In the case 

that the a priori estimated value of 𝑑𝑥𝑘 𝑑𝜃⁄  is unknown, 

the initial value of 𝑑𝑥𝑘 𝑑𝜃⁄   is set to zero. 

 

Improvement of cubature Kalman filter 

Introduce in random weighting factor 

Traditional CKF filtering requires accurate priori 

statistical characteristics of measurement noise. When the 

statistical characteristics of measurement noise are 

unknown, the filtering accuracy will significantly decrease 

or even diverge. 

However, in the actual operation process, complex 

operating conditions and a changeable operating 

environment will cause changes in the statistical 

characteristics of noise. Some scholars use the moving 

window method to adaptively update the statistical 

characteristics of system noise and iterate the error 

covariance matrix to ensure the numerical stability              

of the algorithm, which improves the filtering accuracy of 

the algorithm to a certain extent. However, they all ignore 

the differences in the contribution of information                   

at different times, so they can’t accurately estimate             

the statistical characteristics of measurement noise, which 

has a certain impact on the filtering accuracy. In this 

chapter, the random weighting factor is introduced to 

estimate the statistical characteristics of the system noise, 

and the adaptive adjustment of the weight of the cubature 

point is realized, so as to improve the estimation accuracy 

of the system and further restrain the interference of           

the statistical characteristics of noise to the system [20-22]. 

Random weighting factors are defined as follows: 
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          (15) 

In which, ∆𝑥𝑗 as the state residual vector; ∆𝑦𝑗 as the 

observation residual vector; 𝜆𝑗 as the random weighting 

factor. 

The noise adaptive update process is as follows, and its 

derivation process has been described in detail in reference [23], 

there is no repeat it here: 

System process noise and covariance matrix 

 
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                      (16) 

Systematic observation noise and covariance matrix 

k k -1 k k -1

2 nx x

k k -1 k k -1 i k k -1

i 1

mx x T
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
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  (17) 

 

Introduce in singular value decomposition 

When CKF deal with the problem of non-linear 

system state filtering, the state error covariance matrix 

needs to keep symmetry and positive definiteness all    

the time. However, in practical application, the 

covariance matrix loses positive definiteness due to 

computer truncation error, unknown statistical 

characteristics of system noise, and abnormal model 

disturbance, which leads to system instability and even 

stagnation. Therefore, this chapter introduces Singular 

Value Decomposition (SVD) to improve the stability of 

the algorithm [20,24].  

x T

k 1 k 1 k 1 k 1
P U S V

   
                  (18) 

k 1
k 1 k 1 ik 1 k 1

x U S x , i 1, . . . , 2 n
  

     

SOC estimation of lithium-ion power battery based on 

EKF-ARWCKF filtering 

Establishment of system model 

System modeling is an important means and foundation 

to study a practical system. For the same system, different 

research methods and purposes will lead to differences              

in models. As the most widely used battery model,                    

the equivalent circuit model can’t accurately explain the 

changes in external characteristics caused by the internal 

variables of the battery, but its model is simple, the amount  

of calculation is small, and the accuracy of the model can 

meet the needs of practical engineering, so it is widely used 

in real vehicle BMS [25,26]. In reference [27], the n-RC 

equivalent circuit model is established by distinguishing        

the number of RC nodes, and the equivalent circuit models          

of different orders are evaluated uniformly based on the AIC 

principle. The results show that the 1-order RC model has      

the best balance between model complexity and computation. 

In addition, the research of this dissertation focuses more             

on  the establishment and verification of the parameter and state 

co-estimation algorithm, so this dissertation intends to use    

the 1-order RC model as the model basis in the follow-up 

research, which is shown in Fig. 2. 

Based on Kirchhoff's electric current law and the 

characteristics of electrical components, the following 

discrete systems are established: 

D , k D , k 1

D D

L , k 1 D

D D

t , k O C , k D , k L , k 0

t
U e x p U

C R

t
1 e x p i R

C R

U U U i R





   
   

 
  


   

     
   


  






               (19) 

It is known that the Kalman filtering process can be 

divided into two parts: prediction and correction, that is    

to  say after the prior prediction is completed by the system 

state equation, the prior prediction value is modified based 

on the feedback link of terminal voltage error and the 

optimal state a posteriori estimation is obtained. Therefore, 

this chapter takes the SOC estimation of power battery as 

an example to explain the prior estimation and posterior 

estimation process in detail.  

(1) Priori estimation of SOC 

A priori estimation is the preliminary prediction             

of the state quantity, which requires relatively low accuracy, 
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Fig 2: Schematic Diagram of 1order RC Battery Model. 

 

but it should reflect the increase and decrease of SOC         

in the process of battery charge-discharge in real-time.   

The Ampere-hour method is often used for a priori estimation 

of SOC because of its small amount of computation and high 

real-time performance, as shown in Eq.(20).  

k L , k

k 1 k

a

i t
z z

C


 
                   (20) 

Where, 𝑧𝑘 represent the SOC estimate of k-moment; ∆𝑡 

is the data sampling interval; 𝜂𝑘 represent the coulombic 

efficiency of the battery, which is related to the battery 

charge-discharge rate, operating conditions, and other factors. 

In view of the fact that the tests in this dissertation are carried 

out under laboratory conditions, the default value is 1. 

(2) SOC posterior estimation 

A posteriori estimation corrects the prior estimation of 

the state through the feedback link, which directly 

determines the estimation accuracy and optimization 

efficiency of SOC. The mapping relationship between      

the open-circuit voltage and SOC is relatively little 

affected by environment temperature, operating 

conditions, and other factors, and always maintains                

a monotonous mapping relationship, so the OCV-SOC 

fitting relationship is usually chosen as the feedback link 

of a priori estimation. Establish the OCV-SOC mapping 

relationship as follows: 

2 3

o c , k 0 1 k 2 k 3 k
U a a z a z a z                     (21) 

   4 k 5 k 6 k
a z a l n z a l n 1 z    

In the flow of modeling, it is assumed that the maximum 

available capacity of the battery is accurately known (the 

co-estimation of SOC and capacity will be discussed in the 

following chapters). Parameter quantities include ohmic 

internal resistance 𝑅0,𝑘, polarization internal resistance 𝑅𝐷,𝑘   

and polarization capacitance 𝐶𝐷,𝑘, and the state quantities 

include polarization voltage 𝑈𝐷,𝑘 and charged state 𝑧𝑘.    

The model parameters obtained by the online identification 

strategy and the input battery terminal voltage and electric 

current can be used to estimate the state of the power 

battery in real-time. In this dissertation, a co-estimation 

algorithm based on state and parameters is used to estimate 

the SOC accurately. 

The state matrix and parameter matrix are defined        

as follows:  

T

k D , k k
x [ U , z ]                   (22) 

T

k 0 , k D , k D , k
[ R , R , C ]                   (23) 

By reconstructing the equation (19) according to the 

above definition, the state equation and observation 

equation based on extended Kalman filter- EKF-ARWCKF 

filtering co-estimation can be obtained: 

k 1 k k k

D , k D , k k

L , k D , k

D , k D , k

k L , k a

k 1 k 1 k 1 k 1 o c , k D , k L , k 0 , k

x f ( x , , u )

t
e x p ( )     0

C R x

0                     1  

t
[1 e x p ( ) ]i R

C R

i t / C

y g ( x , , u ) U U i R


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 


  

   
 
   


  
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 


 


    


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   (24) 

Where,𝑦𝑘  represent terminal voltage and 𝑢𝑘 as the 

terminal electric current. The above mathematical 

relationship is the mathematical model of SOC estimation 

algorithm based on EKF-ARWCKF filtering.  

 
SOC co-estimation algorithm based on 1-order RC Model 

The flow and the model construction for the co-estimation 

algorithm of parameters and state have been described in detail 

in section 1.1, in a nutshell, the current state of the battery             

is accurately estimated based on the obtained parameters and 

then the accurate state estimation is used to estimate                     

the parameters of the model at the next time. However, 

considering the slow time-varying characteristics of the model 

parameters and the fast time-varying characteristics             

of  the  system  state, it is  difficult to  co-estimate  them

·

OCV





tU

0R
DR

  -DU

DC
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on a unified time scale. So the problem of time scale         

will be studied in the following chapters. This chapter only 

considers the co-estimation problem under a single-time 

scale.  

The correlation matrix in the system state equation    

and measurement equation is defined as follows:  
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During the operation of the BMS system, the current 

and voltage signals measured and loaded by the sensor       

in real time are transferred into the EKF-ARWCKF filter 

to co-estimate the state and parameters of the power 

battery. Fig. 3 is a flow chart of the algorithm based on 

EKF-ARWCKF filtering. 

 

Calculation case and experimental verification 

Lithium-ion power battery bench 

In this dissertation, the ternary lithium-ion battery with 

a rated capacity of 2Ah is taken as the test object, and        

the basic characteristics of the ternary lithium-ion battery 

are tested through the lithium-ion power battery test bench 

to obtain the required test data. The lithium-ion power 

battery test bench is mainly composed of a power battery 

tester (Neware BTS), a thermostat (DF-GDW) used to 

change the test environment temperature, and an upper 

computer used to control the test process and store test 

data, as shown in Fig. 4.  

The Neware BTS (Battery Test System) has 16 test 

channels, the voltage test range of each channel is 0-5 V, 

and the measurement inaccuracy is less than 0.05%. It can 

test the characteristics of the power battery according to 

the preset charge-discharge strategy in the upper computer 

and collect the current, voltage, charge-discharge capacity, 

and other information in real-time, and upload the relevant 

information to the upper computer for storage. The 

thermostat can adjust the environment temperature               

in the range of -40 ℃-80 ℃, then realize the characteristic 

test under different temperature conditions, and analyze 

the characteristics of the power battery at different 

temperatures. The upper computer is used to formulate the 

charge-discharge strategy, control the test process and 

store the test data. The information on the power battery 

and the test equipment used in this dissertation are shown 

in the following Table 1.  

 

Verification and Analysis of EKF-CKF Series filtering 

algorithms 

In order to further improve the filtering effect, the random 

weighting theory and singular value decomposition                  

are introduced into the cubature Kalman filtering process         

to adaptively adjust the cubature point weight and system noise 

while improving the stability of the algorithm. In this section, 

during the verification process, the initial value of SOC is set to 

60% (the precise value is 80%), and the filtering results of 

FRLS-EKF,  EKF-CKF,   and  EKF-ARWCKF   algorithms  

under DST operating conditions (25 ℃) are compared, as shown 
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Fig 3: Flow Chart Based on EKF-ARWCKF Filtering Algorithm. 

 

 

 

Fig 4: Configuration of Battery Test Bench. 
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Table 1: Main parameters of the battery cell. 

Battery type Nominal voltage Charging cut-off voltage Discharging cut-off voltage Rated capacity 

LNMC/Graphite 3.6 V 4.2 V 2.9 V 2 Ah 

 

Table 2: Main Parameters of the battery test system. 

Performance index Parameter 

Number of channels 16 

Single-channel voltage range 0-5 V 

Single-channel current range 0-10 A 

Current / Voltage control accuracy 0.05% 

Data acquisition interval 1 Hz/10 Hz/50 Hz/100 Hz 

Communication TCP/IP 
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Fig 5: Comparative Analysis of Filtering Results Between FRLS—CKF and EKF—CKF. 

 

in Fig. 5 and Fig. 6. From the comparison results, it is found 

that the co-estimation algorithm of parameter and state 

based on EKF-CKF filter can not only improve the prediction 

accuracy of terminal voltage and SOC, but also converge 

to the reference value faster when the initial value of SOC 

is inaccurate, which has better robustness. 

The filtering results of the above three algorithms       

are simply summarized as shown in Table 3, which can be seen 

from the above error analysis results: (1) the extended 

Kalman filter is used to replace the least square method 

based on genetic factors for online identification of model 

parameters, the co-estimation of model parameters and 
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Table 3: Main Parameters of Battery Test System 

Filtering method 
SOC root mean 

square error (%) 

SOC maximum 

absolute error (%) 

Terminal voltage root 

mean square error (mV) 

Maximum absolute error of 

terminal voltage (mV) 

SOC convergence 

time(s) 

EKF—CKF 1.39 2.90 13.88 80.00 80 

EKF—ARWCKF 1.40 3.00 14.06 78.00 78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6: Comparative Analysis of Filtering Results Between EKF—CKF and EKF—ARWCKF (a)Prediction result  

of terminal voltage; (b)Terminal voltage prediction error; (c)SOC prediction result; (d) SOC prediction error. 

 

the state is realized, then the posterior estimation of the state 

is used to correct the priori estimation of parameters, 

which further improves the accuracy of parameter 

identification and state prediction. Based on the DST 

operating condition data at 25 ℃, the results show that the 

co-estimation of parameter and state algorithm based on 

EKF-CKF filter can not only improve the prediction 

accuracy of terminal voltage and SOC, but also converge 

to the reference value faster when the initial value of SOC 

is inaccurate and has better robustness. (2) Random 

weighting factor and noise adaptive process are introduced 

in the EKF-CKF filtering process to update the system 

noise while adaptively adjusting the weight of the cubature 

point, which suppresses the influence of the fixed weight 

of the cubature point and noise sensitivity on the CKF filtering 

process, is more suitable for practical applications. The DST 

operating condition data at 25 ℃ are also used for comparative 

verification, and the results show that the introduction of the 

random weighting factor does not significantly improve the 

filtering effect. In view of the singleness of the experimental 

data selected in this section, the effect and significance                  

of the improved al will be further verified. 

 

RESULTS AND DISCUSSION 

Time scale is the average measurement of the time      

for a system to complete a process. In the actual battery 

system, the time-varying characteristics of the parameters 

and the state are obviously different. Usually, the state of 
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the system has the characteristic of fast time-varying, and 

the system parameter has the characteristic of slow time-

varying. If the system parameters and states are estimated 

by taking the data sampling interval as the unified time 

scale, the stability of the algorithm will be decreased and 

the computational load of the algorithm will be increased 

if the system parameters change too frequently. Finally,      

it has an impact on the stability and response speed of the 

estimation algorithm. Furthermore, some scholars co-estimate 

the system parameters and state based on two kinds of time 

scales, that is to say, the system states are estimated by the 

micro time scale, and the system parameters are modified 

under the macro time scale. The two-time scales are 

relatively fixed and the macro scale is a fixed multiple of 

the microscale [27]. Compared with the single time scale, 

the dual time scale avoids the operational load caused by 

the fluctuation of system parameters and improves the 

stability of the algorithm to a certain extent, but it also has 

some limitations. First of all, there is a lack of reasonable 

theoretical support for the macro-scale for the correction 

of system parameters, and the algorithm is highly volatile 

at different macro-scales. In addition, the fixed time scale 

of system parameter estimation is difficult to be widely 

applied to complex and changeable real vehicle operating 

conditions, and the estimation of system parameters will 

be significantly affected when the change of SOC is small 

or the charge-discharge current is small in a fixed time 

interval. In addition, some scholars have proposed to use a 

certain amount of SOC change as the conversion standard 

between micro and macro time scales, that is to say, to set 

the SOC change threshold to complete the time update of 

the model parameters. Although it avoids the disadvantages 

caused by the fixed-parameter update scale to a certain 

extent, the SOC estimation error also brings uncertainty     

to the capacity estimation [28]. In practical application,   

the measurement accuracy of current is obviously higher 

than the estimation of SOC[29], so this section takes the 

influence of temperature as an example to realize the co-

estimation of SOC at different temperatures based on 

EKF-ARWCKF filtering algorithm. In view of the 

different time-varying characteristics between battery state 

and parameters, further-more, the co-estimation algorithm 

of parameters and state under variable-time-scale is proposed 

and compared with the estimation results under single-

time-scale. 

Establishment of non-linear discrete system under 

variable-time-scale 

k 1 k i k k

l 1 l l

k 1 k 1 i 1 k 1 k 1
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                (32) 

Where, k represents the sampling point of the system   

at the moment of tk, the time scale of state estimation           

is consistent with the data sampling interval; l represents    

the time scale of system parameter estimation. In this 

dissertation, the cumulative discharge capacity is used       

as the conversion standard between micro-scale and       

macro-scale, that is to say, the system parameters are estimated 

at regular intervals of cumulative capacity discharge (Ll is 

the scale conversion limit value); 𝜃𝑙represents the system 

parameter vector identified on-line by the algorithm at the 

sampling time of 𝑡∑ 𝐿𝑙
, which will be used as the model 

parameter value of the state estimation in the next 𝐿𝑙+1 

sampling interval and the meaning of the other parameters 

is consistent with that of the Eq.(24). Here, the parameter 

matrices 𝑃𝑘
𝜃 , 𝑄𝑘

𝜃 , 𝑅𝑘
𝜃     in a single-time-scale in section 1.1 

are rewritten into 𝑃𝑙
𝜃 , 𝑄𝑙

𝜃 , 𝑅𝑙
𝜃  in variable-time-scale. the 

principle of the filtering algorithm is shown in Fig. 7. 

 
Co-estimation of SOC and capacity under variable-time-

scale  

Based on the 1-order RC equivalent circuit model 

establishes the non-linear discrete system of power battery 

as shown in Eq.(33). The feedback and correction of          

the prior estimates of the state and model parameters of       

the variable time scale EKF-ARWCKF system are also 

based on the terminal voltage error, and then the accurate 

a posteriori estimates are obtained. 
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               (33) 

The feedback link of the co-estimation of capacity and 

SOC will be built here. 
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Fig 7: Variable Time Scale Filtering Based on EKF-ARWCKF Algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8: Capacity—SOC—OCV Three-Dimensional Response Surface. 

 

For the same type of battery, the OCV-SOC 

relationship is relatively stable, so it is often chosen       

as the feedback link of SOC[30,31]. However, in the 

process of practical application, the battery aging 

degree and using temperature will affect it, and the most 

intuitive reflection of the aging degree, using temperature 

and other factors of the battery is the capacity, that is to say, 

when effectively estimate the battery capacity, we should 

fully consider the changes of battery aging degree, 

considering temperature and OCV-SOC relationship[32,33]. 

Therefore, this section is based on the OCV-SOC relationship 

under different capacities, whose mapping relationship is shown 

in Eq.(34). The capacity—SOC-OCV three-dimensional 

response surface shown in Fig. 8 is established to provide 

accurate feedback on capacity and SOC.  
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It should be noted here that the polynomial coefficients 

𝑏0 to 𝑏6 are no longer constants, which are quadratic 

functions related to capacity: 
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Fig 9: Flow Chart Based on Variable Time Scale EKF-ARWCKF Filtering Algorithm. 

 

In which,  is 7 × 3, which is obtained by fitting          

the OCV-SOC relationship with different capacities, and 

𝐶𝑎,𝑙  represent the capacity value obtained by feedback 

correction at 𝑡∑ 𝐿𝑙
 monent.  

Based on the above model relationship, the system 

state and parameter matrix are defined respectively           

as shown in the Eqs.(36-37). The state matrix includes 

polarization voltage 𝑈𝐷,𝑘  and charge state 𝑧𝑘, which is 

updated once at each sampling interval, and the parameter 

matrix includes ohmic internal resistance 𝑅0,𝑙, polarization 

internal resistance 𝑅𝐷,𝑙, polarization capacitance 𝐶𝐷,𝑙   and 

battery capacity 𝐶𝑎,𝑙 , which is modified every Ll sampling 

interval.  
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The state equation and observation equation suitable 

for EKF-ARWCKF filtering can be obtained by 

reorganizing the definition of charge state, system discrete 

equation, state, and parameter matrix.  
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 (38) 

There established the discrete mathematical model of 

the variable-time-scale EKF-ARWCKF filtering algorithm 

in this chapter. Based on this, the subsequent chapters will 

study the co-estimation of capacity and SOC. The overall 

flow of the co-estimation filtering algorithm is shown in 

Fig. 9. 

 

Calculation case and experimental verification 

In this section, during the verification process,             

the filtering algorithm is debugged with the basic 

characteristic test data at three fixed environment 
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data of FUDS at room temperature, the algorithm is verified  
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Fig 10: Comparative Analysis of Variable Time Scale EKF-ARWCKF Filtering Algorithm: (a) terminal voltage filtering results 

comparison (b) terminal voltage prediction error; (c) SOC filtering results comparison; (d) SOC estimation error; (e) capacity 

filtering results comparison; (f) capacity prediction error ratio. 

 

of SOC and capacity are not accurate. In addition, this 

section sets the scale conversion limit value L (that is to 

say, discharge capacity) to 0.06 Ah. Finally, the prediction 

results of single-time-scale and variable-time-scale 

algorithms are compared, and the advantages and 

disadvantages of the algorithm are analyzed in detail. 

Based on the detailed analysis of the filtering results of 

variable-time-scale, the following conclusions can be obtained: 

(1) after the algorithm converges to stability, the absolute 

error of terminal voltage is basically below 70.00 mV,        

as shown in Fig.10(a) and (b); (2) according to the 

prediction results and errors of SOC (Fig. 10(c) and (d), 

the algorithm can converge to less than 5.00% error within 

107 seconds, and the SOC estimation error after converging 

to stability is less than 1.00%; (3) Fig (e) and (f) show that 

the predicted capacity can converge to the  reference value
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Table 4: Comparison of EKF-ARWCKF filtering results between single-time-scale and multiple-time scale. 

Filtering algorithm 
Terminal voltage root mean square 
error (mV) 

SOC root mean square error 
(%) 

Capacity root mean square error 
(%) 

Single-time-scale  EKF—ARWCKF 11.27 1.17 4.93 

Variable-time scale EKF—ARWCKF 9.82 0.94 3.17 

for the first time within 271 s, and the capacity error after 

convergence is less than 2.00%. It should be noted that the 

271 s is the macro-time-scale of the first capacity update, 

which is related to the setting of the scale conversion 

standard and does not represent the exact time of the 

algorithm convergence. Therefore, it is of little significance 

to compare with the capacity convergence rate under             

a single-time scale. 

Through the above comparison, it can be found that the 

EKF-ARWCKF filtering results under the variable-time 

scale are better than the single-time- scale in most error 

indexes. The advantages of the co-estimation algorithm of 

system state and parameters are as follows: By constantly 

modifying the model parameters and system state 

quantities, the terminal voltage error is gradually reduced 

to the minimum, so that the state prediction result is based on 

terminal voltage error feedback is to optimality. However, 

considering the slow time-varying characteristics of the 

parameter quantity of the system and the fast time-varying 

characteristics of state quantity, if a single-time-scale         

is used, the algorithm will frequently modify system 

parameters unnecessarily to improve the prediction 

accuracy of terminal voltage, thus weakening the feedback 

of terminal voltage to state prediction and even affecting 

the accuracy of state estimation. At the same time, 

imprecise state estimators will affect the correction of 

system parameters, and ultimately reduce the accuracy and 

stability of the filtering algorithm. Table 4 shows the error 

characteristics of the two algorithms, which more directly 

reflects the advantages and disadvantages of the two 

algorithms, and verifies the rationality of the above results.  

 

CONCLUSIONS 

In the process of practical application, the maximum 

available capacity of the battery is not a definite value.      

As many factors will affect it, it is difficult to obtain its 

accurate value. Based on the research of co-estimation      

of state and parameters, this dissertation introduces the 

maximum available capacity of the battery into the system 

parameter matrix, and finally completes the co-estimation 

of capacity and SOC. The comparison between EKF-

ARWCKF and EKF-CKF under a single time scale shows 

that, the improved method has a similar accuracy with 

EKF-CKF and a better convergence speed.In view of the 

different time-varying characteristics between the system 

parameters and state, the cumulative discharge is selected 

as the time-scale conversion standard, and the co- 

estimation algorithm of capacity and SOC under variable-

time-scale is constructed. Based on the basic characteristic 

test and cycling condition test data, the EKF--ARWCKF 

filtering algorithm in single-time-scale and variable-time-

scale is verified under the condition of inaccurate SOC and 

initial capacity. The filtering results of two algorithms are 

compared and analyzed from the aspects of: terminal 

voltage prediction accuracy, SOC estimation accuracy, 

and capacity estimation accuracy. The results in Table.4 

show that the accuracy of the variable-time-scale algorithm is 

better than that of the single-time-scale algorithm, and the amount 

of computation is significantly reduced.  

In future research, it will not only be limited to the 

single battery, but also consider the co-estimation of power 

batteries in different groups, and make an in-depth study 

on the capacity recession model of power batteries.  
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