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ABSTRACT: The thermodynamic properties of fluids can be predicted using the global equations 

of state. Among these thermodynamic properties of fluids, we choose the densities of the liquid and 

vapor phases. This paper considers the application of the crossover model to the vapor-liquid 

rectilinear diameter of sulfurhexafluoride. We also present a comparison of the crossover model 

equation with the experimental data. 
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INTRODUCTION 

The critical thermodynamic behavior of fluid systems 

has been the subject of several investigations [1], 

conducted in analogy with the 3-dimensional Ising-like 

systems. Asymptotically close to the critical point the 

thermodynamic properties of fluids show anomalous 

behaviors. Such behavior can be characterized in terms of 

scaling laws with universal critical exponents and 

universal scaling functions [1-3]. Unlike the 3-dimensional 

Ising-like systems, fluids exhibit a lack of vapor-liquid 

symmetry in the shape of their coexistence curve. 

It is well known that an empirical analytic equation of 

state does not reproduce the correct thermodynamic 

behavior of fluids in the critical region. On the other 

hand, an equation of state that is valid in the critical 

region cannot be extrapolated in the classical region. 

Therefore, a unified equation of state is needed in order to 

take account of the thermodynamic properties of fluids 

over a wide range of temperatures and densities; while  

 

 

 

having a good agreement with experimental data in the 

critical region as well as in the classical region, far away 

from the critical point. Such an equation is available and 

is based on the crossover model formalism [4, 5]. 

In the present work, we give the application of the 

crossover model to the coexistence-curve diameter, and 

show that we can reproduce the liquid-vapor  coexistence 

curve diameter, only by using the already formulated 

equation of state for sulfurhexafluoride [4,5]. 

This article is organized as follows; after the 

introduction, we briefly review the six-term Landau 

crossover model in section 2. Then, we present the 

common prediction of the behavior of the coexistence-

curve diameter equation for one-component fluid in 

section 3. We finally discuss the application of the 

crossover model to the coexistence-curve diameter of 

sulfurhexafluoride in section 4, and give a comparison of 

the experimental data with those of the model. 
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THEORY 

The modern theoretical description of systems close 

to the critical point is based on the renormalization-group 

theory (RG) [6]. Different physical systems with the same 

space dimensionality d, and the same number n of 

components of the order parameter can be grouped within 

the same universality class. Based on earlier work of 

Nicoll et al. [7, 8] and Bagnuls and Bervillier [9], a 

crossover model has been developed to represent the 

thermodynamic properties of fluids in the critical  

region [4,5]. The crossover model is based on the 

renormalization-group theory of critical phenomena. Let 

ρ be the density, T the temperature, P the pressure, µ the 

chemical potential and A/V the Helmholtz free energy per 

unit volume. We make these properties dimensionless 

with the aid of the critical parameters [2,4,5]. 
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The quantity A
~

∆  in Eq. (3) represents the singular 

part of the Helmholtz free-energy density. The 

coefficients jA
~

 are background parameters which can be 

determined by fitting the crossover model to P-ρ-T data 

(P is pressure, ρ density and T temperature). The relevant 

thermodynamic relations in terms of these reduced 

thermodynamic properties can be found elsewhere [4,5]. 

Classical equations of state for the Helmholtz free energy 

density A imply that the classical part Acl has an 

asymptotic expansion of the form [10]: 
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Where t and M are temperature-like and density-like 

variables related to ∆T and ∆ρ in a manner to be specified 

below. In the sequel we find it convenient to write the 

coefficient u0 of the M4 term in (5) as u  0 Λ=u , where 

Λ is a dimensionless cutoff wave number [1,4]. In order 

to obtain a fundamental equation that can be applied in a 

large range of densities and temperatures around the 

critical point we retain six terms in the classical Landau 

expansion (4) for ∆Acl so that: 
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the coefficients a05, a06, a14, a22 are also system-dependent 

parameters. As shown by Chen et al. [4] the theoretically 

predicted asymptotic behavior can be recovered from this 

expansion by the following transformation: 

+++= VU
/

D M
!

a
UDM

!

u
TDtMr��

255

5

05
 

24

4

02

2

1~
 (7) 

            

 Kt-
/-

DUTMt
!!

a

/
UTD tM

!

a/
UD M

!

a

2

2

121222

22

22

2124

4

142336

6

06
++

 

Where the functions T, D, U, V and K are defined by: 
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In these expressions, β, ν, η, ω and ωa are universal 

critical exponents, u* is also a universal constant.  The 

values of the universal critical–region parameters are 

specified in table 1. The crossover model depends 

parametrically on the variable  κ 

2 defined by Eq. (10). For 

small values of   κ one recovers from Eq. (7) the scaled 

critical behavior, while for large values of κ the crossover 

function Υ approaches unity and Eq. (7) reduces to the 

classical Landau expansion of Eq. (6). 

Crucial for the application of the crossover model to 

fluids is a suitable transition of the field variables t and M 

[4, 5]. This idea can be accomplished by the following 

transformation: 
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where,  c�t, cρ and d1 are system-dependent constants. The 

coefficient c is another system-dependent parameter that 

mixes the field variables t and M.  

 

COEXISTENCE-CURVE  DIAMETER 

One of the most important consequences of the 

mixing of the field variables t and M is the existence of a 

weak singularity in the coexistence-curve diameter. We 

denote the liquid density by ρliq and the vapor density by 

ρvap, ρc as the critical density, and T
~

∆  the reduced 

temperature. Then close to the critical point, the 

renormalization-group theory predicts that [11]: 
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where α is the critical exponent that characterizes the 

divergence of the specific heat at constant volume, β, ∆, 

and ∆a = ωaν are other critical exponents given in  

Table 1. 

Since  (1-α)  is  close to unity,  the  singularity  in  the 

Table 1: Universal critical-region constants 

  α = 0.11 , ������������ η = 0.0333 ,   β = 0.325 

  ∆ = 0.51 (ω = ∆/ν = 0.80952) ,  ωa =2.1 ���,   �u∗ = 0.472 

 

coexistence-curve diameter is very difficult to detect. 

However, early experiments performed by Weiner, 

Langley and Ford on sulfurhexafluoride [12], whose data 

have been further analyzed by Ley-Koo and Green [13], 

indicate that the singular term is present. Subsequent 

experiments performed by Pestak and coworkers for 

nitrogen, neon, and for ethane and ethylene [14] have also 

confirmed the presence of the hook characterized by this 

weak singular term with the predicted exponent (1-α). 

With ∆=ων, the crossover model reproduces this 

expansion with the coefficients ds1 and ds2 given by the 

following expressions: 
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The coexisting liquid and vapor densities may be 

presented by the following relation: 
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with β a new critical exponent with a value listed on 

Table1. The coefficients Aβ, Aβ+∆, and Aβ+2∆ can be 

determined from the model or by fitting the experimental 

data to Eq. (18).   

 

APPLICATION  TO  SULFURHEXAFUORIDE 

Sulfurhexafluoride can be used in particular, by the 

electrical power industry, where the fluid is used in 

equipment such as high-voltage circuit breakers and  

gas-insulated transmitters, due to this industrial 

importance;  it has been the focus of our study. 

For a comparison of our crossover model with 

experimental data of sulfurhexafluoride, we consider the 

coexistence-curve diameter of sulfurhexafluoride for 

which an equation of state in the critical region has been 

proposed earlier by Abbaci and Sengers [15, 16]. 

The system-dependent constants in the crossover 

model [3,4] were determined  from a fit to the P-ρ-T data 

of Biswas et al. [17] with temperatureand density  ranges 
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Table 2: System-dependent constants in the crossover model of 

sulfurhexafluoride 

 Λ=1.1382,     u  = 0.44868, ct = 1.9535,   cρ = 2.3957, 

 c = -0.02092 
 

a05= -0.25834, a06= 1.4306,  a14=0.63984 ,a22= 0.60844 

Ã0= -1,                 Ã1= -6.0726,               Ã2= 4.7809 

Ã3= 1.4783,         Ã4= -0.55502,              d1= -0.45778,  
 

ds1= 0.255a ,         ds2= 0.383a  

  

Aβ = 1.66b,           Aβ+∆= 1.26b,                Aβ+2∆ = -3.66b 

 

d1 = 6.47c,            ds1 = 3.99c,                  ds2 = 6.94c    

a: Equations (16) and (17), b: direct fitting to Eq. (18), 
c: direct fitting to Eq. (15) 

 

of 312 K ≤ T ≤  365 K and 350 kg/m3
≤ ρ ≤  1075 kg/m3 

respectively. The critical parameters used here are the 

same one used by Abbaci and Sengers [15, 16]: 

   ,MPa  7543.3   ,K  733.318 == c PcT           �              (19) 

3
kg/m  743.807c =ρ  

With a fixed system-dependent parameters shown in 

Table 2. A comparison of the crossover model equation 

with the density experimental data reported by Pestak and 

coworkers [14] is shown in Fig. 1. We also show the 

densities of the coexisting vapor and liquid phases of 

sulfurhexafluoride as a function of the temperature in  

Fig. 2. As expected, the data reported by Pestak and 

coworkers tend toward quite satisfactory agreement when 

fitted to Eq. (15). Two liquid-vapor points measured by 

Gilgen and coworkers [18] are also shown in Fig. 1 and 

Fig. 2. We notice in Fig. 1 that these two points are 

slightly off the curve. The offset of Pestak’s data with 

respect to the curve predicted from the crossover model 

equation is probably due to the fact that these density-

data were obtained from measurements of the refractive 

index, then the data of this latter were converted to 

densities using values from Lorentz-Lorentz formula. 

However, it is well known that the Lorentz-Lorentz 

formula is only valid at low densities. The coefficient of 

the (1-α) term and the coefficient of the linear term 

deduced from the crossover model differ appreciably 

from the values of the same terms deduced from a direct 

Eq. (15).  These  differences   are  due  to  the  correlation 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 1: Rectilinear diameter as a function of reduced 

temperature. The squares represent the experimental data of 

Pestak et al. [14] and the triangles are those of Gilgen et al. 

[18], the line represents the prediction of the crossover model. 
 

between the (1-α) and the linear amplitudes from 

coexistence-curve data only. This fact explains the 

discrepancies between the slopes in Fig. 1. 

Fig. 1 is too coarse a scale to permit any conclusions 

about the quality of the comparison. The agreement of the 

Pestak et al. [14] sets of data with the coexistence curves 

are typically measured on the level of a few 0.1 % 

uncertainty. It is therefore, more appropriate and even 

more informative to show deviation plots. Fig. 3 shows 

the deviation plots of Pestak et al. experimental data [14] 

with respect to the  values calculated from the crossover 

model as well as the curve fit to Eq. (15). The 

experimental data are reproduced with the crossover 

model  with  standard  deviations  of  0.07 %  and  0.17 % 

using ρ c=743.807 kg/m3 and  733c =ρ  kg/m3 respectively, 

and an average deviation of 0.04 % with Eq. (15). 

 

DISCUSSION 

Although   the discussion in this paper has focused on 

the application of the crossover model to the liquid-vapor 

coexistence-curve diameter, it can also be extended to 

other thermodynamic properties. The comparison  

made here for sulfurhexafluoride is not based on any 

fitting to the experimental data in question. Furthermore, 

it  can  be seen that  the hook that is  characterized by  the 
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Fig. 2: Density-temperature diagram. The squares represent 

the experimental data of Pestak et al. [14], and the triangles 

are those of Gilgen et al. [18]. The line represents the 

prediction from the crossover model. 

 

term 
)-1(

|
~

|
α

T∆  in the rectilinear diameter for 

sulfurhexafluoride is�so small that it can�not�be noticed. 

Furthermore, our crossover equation implies a value 

of the specific-heat-amplitude ratio A+/ A-  which is about  

5 % below the theoretical value, that is the best ratio as 

obtained from renormalization-group calculations for the 

Ising model [4,5], and the amplitude of the hook of the  

coexistence-curve diameter is intimately connected with 

the specific-heat amplitude A- . Therefore, it is sometimes 

very difficult to make any statement about the magnitude 

of this hook as long as the amplitude ratio is not known 

correctly.  Kostrowicka and Sengers [19] proposed a new 

equation of state for the thermodynamic properties of 

sulfurhexafluoride.  This equation does not differ from 

the one we proposed earlier, for it could fix the caloric 

properties problem, but in our view it leaves the other 

properties unchanged in general, this is because,  

we  tested  our  equation  of  state  with  the P-ρ-T data of  

Gilgen et al. [18], and found that it gives quite 

satisfactory results, this suggests that the density 

calculations from our equation of state  are as good as the 

one if they were calculated with the equation proposed by 

Kostrowicka and Sengers  [19]. 
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