Reaction of 1, 1', 2, 2'-Tetrakis (phenylamino) Ethane with Glyoxal; Synthesis of N^2 , N^3 , N^7 , N^8 , 1, 4, 5, 6, 9, 10 -Decaphenyltetradecahydro dipyrazino [2, 3-b: 2, 3-e] Pyrazine-2, 3, 7, 8 -Tetraamine and 5, 6 -bis (ethoxy) - N^2 , N^3 , 1, 4 -Tetraphenylhexahydro -2, 3- Pyrazinediamine

Kakanejadifard, Ali*+

Department of Chemistry, Faculty of Science, University of Lorestan, Khoramabad, I. R. IRAN

Farnia, Sayed Morteza and Kakoiedinaki, Issa

Department of Chemistry, Faculty of Science, University of Tehran, I. R. IRAN

ABSTRACT: Compound N^2 , N^3 , N^7 , N^8 , 1, 4, 5, 6, 9, 10-decaphenyltetradecahydrodipyrazino [2, 3-b: 2, 3-e] pyrazine-2, 3, 7, 8-tetraamine (4) was prepared by condensation of 1, 1', 2, 2'-tetrakis (phenylamino) ethane (1d) and glyoxal in EtOH or i-PrOH. Also, reaction of 1d with glyoxal in equimolare in EtOH resulted 5,6-bis (ethoxy)- N^2 , N^3 , 1, 4-tetraphenylhexahydro-2, 3-pyrazinediamine (5). The natures of products are sensitive to acidity, temperature and solvent. In acidic media, 4 and 5 are unstable and degraded to diimine 6.

KEY WORDS: Polyazapolycyclic, Hexabenzyl-hexaaza-isowortzitane, Tetraazabicyclo [3, 3, 0] octane, 1,1', 2, 2'-tetrakis (phenylamino) ethane, N^2 , N^3 , N^7 , N^8 , 1, 4, 5, 6, 9, 10-decaphenyltetradecahydrod- pyrazino [2, 3-b: 2, 3-e] pyrazine-2, 3, 7, 8-tetraamine, 5, 6-bis (ethoxy)- N^2 , N^3 , 1, 4-tetraphenylhexa- hydro -2, 3-pyrazinediamine.

INTRODUCTION

Polyazapolycyclic compounds are used as initial substance for preparation of high-density, high-energy materials. These compounds are obtained by condensation of aldehydes or ketones and amines [1-10]. Also, 1,1', 2, 2'-tetrasubstituted ethane (1) were obtained by reaction of amines and glyoxal [11]. Different substituted aryl amines and alkyl amines of tetraazabicyclo

[3. 3. 0] octane (2a-e) have been synthesized by direct condensation of 1 with formal-dehyde [12-18]. Furthermore, hexabenzyl - hexaaza - isowortzitane (3e) is initial substance for preparation of hexanitro-hexaazaisowortzitane (Cl_{20}), which is a most energetic compound. This molecule was obtained by reaction of 1,1', 2, 2'-tetrakis (benzyl amino) ethane (1e) and glyoxal

^{*} To whom correspondence should be addressed. + E-mail: kakanejadi.a@, lu.ac.ir

^{1021-9986/05/2/39 4/\$/2.40}

[19]. In this work the reaction of 1,1', 2, 2'-tetrakis (phenyl amino) ethane (1d), with glyoxal was described.

EXPERIMENTAL

All commercially available chemical reagents were used without purification. Melting points were determined with an Electro thermal 9100 apparatus and are uncorrected. IR spectra were recorded on a Shimadzu 4300 spectrometer. NMR spectra were recorded with a Brucker 80 instrument. Mass analyses of the products were conducted with a Finnigan-Matt 8430 GC-Mass instrument. Elemental analysis was carried out with a C, H, N, O Rapid-Heraeus apparatus.

Synthesis of N^2 , N^3 , N^7 , N^8 , 1, 4, 5, 6, 9, 10-Decaphenyltetradecahydrodipyrazino [2, 3-b: 2, 3-e] Pyrazine-2, 3, 7, 8-Tetraamine (4)

To a solution of 2.46 gr (6 mmol) of 1,1', 2, 2'-tetrakis (phenyl amino) ethane in 20 ml *i*-PrOH at 0 °C, 0.435 gr glyoxal (40% aqueous solution, 3 mmol) was added drop wise. The solution was stirred at 0-5 °C for 5 h. The precipitate was filtered and washed with cold EtOH to give, 2.88 gr (45.3% yield) of 4, mp 157.5-158 °C. IR (KBr) cm⁻¹; 3384(NH). M/z=1018(M⁺), Elemental analysis, C₆₈H₆₂N₁₀, calculated: C, 80.15; H, 6.09; N, 13.75, found: C, 80.24; H, 6.30; N, 13.37. ¹H-NMR (CDCl₃) δ : 6.63-7.49(m, 50H, CH_{Ar}), 5.78 (s, 4H, CH) 4.95-5.08 (d, 4H, J =10 Hz, CH), 3.70-3.82 (d, 4H, J =10 Hz, NH). By addition of D₂O to the NMR sample, the NH signals disappeared and doublet CH protons quickly collapsed into a sing let at 5.01. ¹³C-NMR (CDCl₃) δ :

145.40, 144.95, 144.27, 130.29, 122.71, 119.83, 119.36, 117.99, 114.33, 113.97, 76.64 (CH), 73.06 (CH). The 4 was obtained in EtOH under similar condition. Recrytallization of 4 in the hot *i*-PrOH leads to 6. But, recrystallization from EtOH gives 1.97 gr of a precipitate of 5,6-bis (ethoxy) N², N³, 1, 4-tetraphenylhexahydro-2, 3-pyrazinediamine (5) mp 188-189 °C. IR (KBr) cm⁻¹; 3357 (NH), M/z = 508 (M⁺). Elemental analysis, C₃₂H₃₆N₄O₂ calculated: C, 75.59; H, 7.08; N, 11.02, found: C, 75.60; H, 7.05; N, 11.09. ¹H-NMR (CDCl₃) δ: 6.69-7.37(m, 20H, CH_{Ar}), 5.19 (s, 2H, CH), 5.19-5.30 (d, 2H, J=10.6 Hz, CH), 5.50-5.63 (d, 2H, J=10.6 Hz, NH), 3.29-3.66 (AB_a, 4H, J=7.1 Hz, CH₂) 1.01-1.18 (t, 6H, J=7.1 Hz, CH₃). By addition of D₂O to the NMR sample, the NH signal disappeared and doublet CH protons quickly collapsed into a singlet at δ 5.24. ¹³C-NMR (CDCl₃) δ: 146.31, 144.87, 130.21, 123.68, 119.61, 114.42, 114.01, 85.71 (CH), 71.59 (CH), 61.87 (CH₂), and 14.53 (CH₃).

Synthesis of 5, 6-bis (ethoxy)- N^2 , N^3 , 1, 4-Tetraphenylhexahydro-2, 3-Pyrazinediamine (5)

To a solution of 2.46 gr (6 mmol) of 1,1', 2, 2'-tetrakis (phenyl amino) ethane in 20 ml EtOH at 0-5 °C, 0.87 gr glyoxal (40% aqueous solution, 6 mmol) was added drop wise. The solution was stirred at room temperature for 72 h. The precipitate was filtered and washed with cold EtOH to give 2.13 gr (67% yield) of 5, mp 180-187 °C. Recrystallization from EtOH gave a white precipitate of 5, mp 188.5-189 °C, with general properties (IR, NMR) identical with the product 5 discussed above.

RESULTS AND DISCUSSION

Condensation of 1,1', 2, 2'-tetrakis (phenyl amino) ethane (1d) with glyoxal in EtOH (or *i*-PrOH) produced N^2 , N^3 , N^7 , N^8 , 1, 4, 5, 6, 9, 10-decaphenyltetra decahydrodi-pyrazino [2, 3-b: 2, 3-e] pyrazine-2, 3, 7, 8-tetraamine (4). Also, reaction of 1d with glyoxal in equimolare of reactant in EtOH resulted in 5, 6-bis (ethoxy) N^2 , N^3 , 1, 4-tetraphenylhexahydro-2, 3-pyrazinediamine (5).

In addition, compound 5 can be obtained by recrystallization of compound 4 in EtOH. The conditions of these reaction were studied. It was found that, the nature of products is sensitive to acidity, temperature and solvent. Increasing the temperature reduces the yield of 4 and 5, but results in production to compound 6 (above 30 $^{\circ}$ C, the final product is only the compound 6).

The compound 5 is stable at room temperature; while 4 is degraded to 6 during 3 days. As was mentioned, so at pH = 5 product 4, decomposes to 6 in few minutes. In contrasted the compound 5 is more stable and decomposes in 48 h. This data show that, the compound 5 is theromo daynimal stable product. The mechanisms of formation and decomposition of polyazapolycyclic amine compounds has been studied [11, 14, 16-18]. It should be noted, that we could not produce the compound 3d from proper reactance.

Acknowledgments

We warmly thank of Dr A. Zabardasti and Dr M. Saraji, for useful discussion.

Received : 30th July 2003 ; Accepted : 12th October 2004

REFERENCES

- Willer, R. L. and Atkins, R. L., J. Org. Chem, 49, 5143 (1984).
- [2] Ferguson, I. J., Katritzky, A. R. and Patel, R. J., J.Chem. Soc. Perkin Trans II. 1564(1976).
- [3] Fuchs, B., Shnueli, U., Katritzky, A. R. and Patel, R. L., *Tetrahedron Lett.* 22, 3541(1981).
- [4] Willer, R. L., Moore, D. W., Lowe-Ma, C. K. and Vanderah, D. J., *J. Org. Chem.* **50**, 2368(1985).
- [5] Willer, R. L. and Atkins, R. L., J. Org. Chem, 49, 5147(1984).
- [6] Nielsen, A. T., Stephen, L. and Moore, C. D., J. Org. Chem. 52, 1656(1987).
- [7] Huisgen, R. and Grashey, R., Chem. Ber. 98, 2174 (1965).
- [8] Kornblum, N., Larson, H. D., Blackwood, R. K., Mooberry, D. D. and Oliveto, E. P., *J. Am. Chem. Soc.* 78, 1497(1956).
- [9] Kornblum, N., Singh, H. K. and Kelly, W. J., J. Org. Chem. 48, 332(1983).

- [10] Willer, R. L., J. Org. Chem. 49, 5150(1984).
- [11] Kliegman, J. and Barnes, R. K., J. Org. Chem. 35, 3140(1970).
- [12] Koppes, W. M., Chaykovsky, L. M., Adolph, H. G., Gilardi, R. and George, C. F., *J. Org. Chem.* 52, 1113(1987).
- [13] Farnia, M. and Kakanejadifard, A., *Iran. J. Chem & Chem. Eng.* **11**, 39(1992).
- [14] Farnia, M., Kakanejadifard, A., Karimi, S. and Todaro, L. J., *Iran. J. Chem & Chem. Eng.* **12**, 57(1993).
- [15] Nielsen, A. T., Nissan, R. A., Chafin, A. P., Gilardi,
 R. D. and George, C. F., *J. Org. Chem.* 57, 6756(1992).
- [16] Kakanejadifard, A. and Farnia, M., *Tetrahedron.* 53, 2551(1997).
- [17] Farnia, M., Kakanejadifard, A. and Soudbar, D., *Tetrahedron.* 53, 2557(1997).
- [18] Nielsen, A. T., Nissan, R. A., Vanderah, D. J., Coon, C. L., Gilardi, R., George, C. F. and Anderson, J. F., *J. Org. Chem.* **55**, 1459(1990).
- [19] Chaykovsky, M., Koppes, W. M., Russell, T. P., Gilardi, R., George, C. F. and Flippen-Anderson, J. L., J. Org. Chem. 57, 4295(1992).