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ABSTRACT: In the present investigation attempts were made for the first time to use the 
fundamental color stimulus as the input for a fixed optimized neural network match prediction 
system. Four sets of data having different origins (i.e. different substrate, different colorant sets and 
different dyeing procedures) were used to train and test the performance of the network. The results 
showed that the use of fundamental color stimulus greatly reduces the errors as depicted by the 
MSE and ∆ Cave data and improves the performance of the neural network prediction system. 
Additionally the use of fundamental color stimulus makes provisions for predicting the 
concentrations of one data set whilst being trained by a second data set of completely different 
origin. 
 
 
KEY WORDS: Color match prediction, Neural networks, Fundamental color stimulus, Matrix R. 
 
 

INTRODUCTION 
Conventional visual color match prediction 

procedures (using the eye/ brain combination) became 
obsolete in the twentieth century mainly because of their 
subjectivity. Therefore the early instrumental color match 
prediction counterparts were designed in order to assist 
the visual matcher, to do the same job more objectively. 
However these early instrumental systems did not find 
immediate and wide acceptance. The reason for this was  
 
 
 

that they employed first generation devices for the color 
measurement, approximated models for the predictions 
and analogue computers for the calculations (COMIC 
being one of the first commercial systems) [1]. All the 
modern era color match prediction systems have become 
much more sophisticated. They use modern highly 
accurate abridged spectrophotometers for the color 
measurements. Additionally elaborate modifications of  
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the two or multi flux models for the prediction combined 
with high capacity, extremely fast digital computers for 
the necessary calculations have been made [2]. In such 
procedures the chosen model determines the exact 
relationship between the CIE specified color coordinates 
and the combinatorial concentration of known sets of 
colorants, and the selection of the colorant set is primarily 
determined by the optimization of the tolerable degree of 
metamerism, fastness properties and obviously the price.  

In the start of the twenty first century however there 
has been tendencies to capitalize on the advantages of the 
eye/brain combination namely because it provides 
intelligence in addition to which, the eye/brain combi-
nation is still the final judge. It seems that as a means to 
an end, a revision of thought is taking place. Computerized 
instrumental color match prediction of the next generation 
would be so designed that not only will it cumulatively 
combine the advantages of both the visual and the 
instrumental color match prediction techniques but that it  
would also provide objective decision making based on 
integrated super soft computed color matching network 
systems. This reversion of thought has not as yet been 
fully commer-cially realized but would be achieved in the 

years to come. 
Color match prediction based on artificial neural 

networks would have the following advantages: 
-There is no requirement for the provision of a theory 

relating color to colorant concentration.  
- There is no necessity to prepare a special data base 

for each colorant   in order to use these techniques.  
- The neural network approach may hopefully be able 

to learn the behavior of colorant systems where the 
mathematical descriptions are complex.  

The neural networks shortcomings are as follows: 
- There is no guarantee that the neural network 

approach would provide a solution forthe color matching. 
- Neural networks technique would require a 

sufficient number of training and test samples made from 
single and combinatorial colorations for each set of 
colorants and additionally for changing the substrate, the 
set of colorants and the dyeing procedure. 

- The artificial neural network requires not only to be 
of a structurally optimized architectural design but also 
all the other variants (i.e. training algorithms, activation 
functions, etc.) must be of the right form. 

- Different runs of the same neural network for the 
same data set would not provide the same predictions. 

- The neural network cannot make one → many 
mappings.   

- Time requirements for the predictions tend to be 
comparatively long. 

Although the use of genetic and fuzzy logic 
algorithms have tended to reduce the disabilities and 
improve the capabilities of the neural networks but the 
shortcomings have by no means been completely 
eradicated [3-5].  

Additionally there are some coloristic shortcomings 
inherent to the use of the neural network techniques, 
which are listed below: 

i-There is a need for the preparation of a sufficiently 
large number of training samples to cover the color gamut 
and additionally in order to generalize the training of the 
optimized neural network. 

ii-Each variation in the substrate and/or colorant set 
and/or coloration procedure would require its own 
training and test samples. 

iii-By inputting reflectance into the neural network 
one would expect the output, i.e. the colorant concen-
trations, to provide a spectral (i.e. non-metameric) match. 
However this is not the case since Wyszecki [6] 
hypothesized and Cohen and Kappauf [7] provided the 
means, that the measured reflectance data is composed of 
two components. A basic fundamental color stimulus 
component and a second metameric black component 
unique to each metamer and in every case having 
tristimulus values of zero. 

Strictly speaking, the use of measured reflectance data 
would not be able to provide true spectrophotometric 
(non-metameric) matches because it contains the metameric 
black component.  

Based on this premise, that in order to produce true 
spectrophotometric matches the inputted reflectance 
function should be the fundamental color stimulus 
component, the present investigation was carried out in 
order to provide means by which to minimize some of the 
shortcomings of the artificial neural network techniques 
of   color match predictions [8, 9]. 

 
Theoretical background 

In 1953, Wyszecki [6] presented the view that the 
spectral energy distribution of each set of metamers 
consists, mathematically at least, of two component 
wavelength distributions: (a) a common basic or 
fundamental distribution, intrinsically associated with the 
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Table 1: Data sets preparations. 
 

Variable Data set  1 Data set  2 Data set  3 Data set  4 

Colorants 

Terasil*(Yellow 
6G, Red R, Blue 
BG, Blue GN, 

Violet BL, Brown 
3R) 

Lanaset* (Yellow 
2R , Blue 2R 
Bordeaux B, 

Green B) 
 

Lanaset* (Yellow 
4GN , Blue 5G, 

Red 2B,Violet B, 
Green B) 

 

Terasil*(Yellow 
GWL, Red F B, 

Blue 3RL) 
 
 

Number of samples 383 107 183 142 

Substrate Polyester Wool serge Wool serge Polyester 

Dyeing method Thermosol Exhaustion Exhaustion High temperature 

Type of 
colorants 

Disperse 
Reactive-metal 

complex 2:1 
Reactive-metal 

complex 2:1 
Disperse 

*) Ciba Specialty Chemicals 
 
tristimulus values that these mentamers have  in  common 
and (b) a secondary distribution, unique to each metamer 
and in every case having tristimulus values of (0, 0, 0).  

This second distribution or component necessarily 
involves negative values at some wavelengths along with 
positive values at others, and the net effect is that the 
distribution as a whole contributes nothing to the color 
specification or the perceived color.  

Wyszecki saw the fundamental color stimulus function 
as a linear combination of color-mixture functions and 
therefore as lying within this color-stimulus space. He 
further noted that those functions that are metameric 
blacks must be in a space that is orthogonal to the space 
of the color-mixture functions. 

Matrix R is based on the Wyszecki hypothesis and is 
an orthogonal projector matrix. Cohen and Kappauf [7] 
derived matrix R from a set of color matching functions, 
matrix A, as shown in equation (1): 

Matrix R=A (A ′A)  ¹ A′                                                (1) 

Where A′ is the transposed of matrix A. 
Theoretically, any set of color matching functions can 

be used. Any reflectance spectra (R) under any chosen 
observer-illuminant combination can be decomposed into 
two components, called fundamental color stimulus 
(RFCS) and metameric black (RMB) or residual stimulus 
using matrix R. If the matrix R is multiplied by the 
measured reflectance spectrum R, the fundamental color 
stimulus RFCS is obtained (i.e. RFCS= ((matrix R)×R) and 
the metameric black RMB is given by subtracting the 

fundamental color stimulus from the measured reflectance 
spectra i.e. RMB=R- RFCS .  

 
EXPERIMENTAL 
Sample preparation  

Four different sets of data depicted in Table 1 were 
utilized in the present work. As can be seen from Table 1 
the origins of the data are completely different.  

The Texflash spectrophotometer from the Datacolor 
Company was used for the reflectance measurements of 
all samples. The measurements were carried out with the 
specular component included on four layers of folded 
fabric placed on the large sample port (i.e. 27 mm). The 
average of three measurements was used to obtain the 
reflectance data from which different color coordinates 
under different illuminant/observer combinations were 
calculated. In this way four sets  of data (i.e. data set 1, 
data set 2, data set 3 and data set 4) were at hand, the 
origins of which were completely different and were 
made to create color centers covering as far as possible 
the gamut of available colors for the given set of 
colorants. These data could be utilized to test the effect of 
different substrates, different colorants and different 
method of dyeing on the predictions of artificial neural 
networks color   match prediction systems. 
 
Sample selection 

Data set 35-1 comprising of 35 color centers was 
extracted from data set 1 and was not used in the training. 
A second data set 35-234 comprising nearly the same 
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color centers as data set 35-1 was selected from the entire 
data set 2, data set 3 and data set 4. Therefore, data set 
35-1 and data set 35-234 formed 35 metameric close (but 
not exact) matches having parameric differences of less 
than 1.7 ∆ECIE1994 units under the reference conditions 
(i.e. illuminant D65 /CIE 1964 Supplementary Standard 
Colorimetric Observer).  

Three hundred forty eight polyester samples being 
extracted from data set 1 dyed by the thermosol process and 
were used to train an optimized artificial neural network. 
Data set 35-1 was used to test the neural network. This 
would mean that if an artificial neural network trained by 
data set 1 (comprising of  383  polyester samples dyed by 
the thermosol process) correctly predicted the recipes 
(represented by small error factors i.e. mean square error, 
MSE and/or small ∆Cn=(│Cna-Cnp│/n). Where Cna and 
Cnp denote actual concentration of n colorants and 
predicted concentration of n colorants respectively. When 
this tested by the data set 35-1 (comprising of 35 
polyester samples dyed by the same set of colorants and 
the same thermosol process), then  most  probably a  well  
trained artificial neural network has been obtained. 
However if the same artificial neural network trained by 
the  same data  set, i.e. data set 1, could correctly predict 
the recipes (i.e. with low error factors as mentioned 
previously) when tested by the data set 35-234 (comprising 
of 35 samples of wool and polyester samples dyed with 
different colorants and different methods of dyeing). This 
would most probably be indicative of a more intelligent 
artificial neural network insensitive to variables such as 
substrate, type of colorants and the dyeing process i.e. 
very  much like the intelligent visual predictions. In order 
to test the above-mentioned premise, the input function of 

a fixed genetically optimized neural network architecture 
was varied as is mentioned in the next section. 
 
Neural network architecture 

MATLAB 6.5 [12] was used as a tool for obtaining 
color recipes predicted on a fixed optimized 16×10×10×6 
neural network architecture. The input layer consisted of 
the measured surface spectral reflectance (or one of its 
four transformations mentioned below) of the target color 
centers at 16 wavelengths of 20 nm intervals throughout 
the visible range of the spectrum between 400-700 nm. 
The output layer corresponded to the concentrations of 
the mentioned colorants. The network was trained using 

the Scaled Conjugate Gradient Back Propagation  
algorithm [13]. A positive linear activation function was 
used in the output layer whilst the logsig function was 
used in the hidden layers. Training was made to continue 
over 100000 epochs. Each network was made to run three 
times and the network with the least MSE was selected 
for further analysis. 
 
Neural network inputs 

Networks were trained separately as follows: 
1-Trained with the untransformed original measured 

spectral reflectance i.e. R. 
2-Trained with a transformation based on a weighted 

cube root coordinates [10]  

{ } { } { }[ ] 2
1222

CRC LwLvLuR ×∑+×∑+×∑=  

where  

L =25(R )1/3-17                                                               (2) 

3-Trained with a transformation based on the Munsell 
value polynomial transformation [11] 

RMVP = 1.2219×R-0.23111×R2+0.23951×R3-                (3) 
           0.021009×R4+0.0008404×R5 

4-Trained with an exponential transformation 

REX=exp(R)                                                                    (4) 

5-Trained with the fundamental color stimulus 
transformation derived from previously mentioned matrix 
R (i.e. RFCS). 
 
Error estimation 

The five mentioned inputs produced five artificial 
neural networks trained by data set 1.These trained 
networks were first tested by selected samples of data set 
35-1 and then subsequently tested by the second selected 
35 samples of data set 35-234. The performance of the 
five input functions were expressed firstly as the MSE 
depicted in Figs. 1 to 5 and secondly as average absolute 
concentration difference between the actual and predicted 
concentration of individual colorants (i.e. ∆C1, ∆C2… 
∆C6) and the total average absolute concentration 
difference of the recipe for all colorants (i.e. ∆Cave) as 
illustrated in Table 2. The standard deviation of average 
concentration differences (Std(∆Cave)) obtained when 
the network was run three times are also given in Table 2. 
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Table 2: Colorant concentration error for various reflection functions. 
 

Data type Function ∆C1 ∆C2 ∆C3 ∆C4 ∆C5 ∆C6 ∆Cave Std(∆Cave) 

Trained with 348 
samples of data set 1 
and tested with data 

set 35-1 

R 
RCRC 

RMVP 
REX 
RFCS 

0.003 
0.004 
0.002 
0.016 
0.018 

0.027 
0.034 
0.034 
0.016 
0.018 

0.015 
0.003 
0.014 
0.009 
0.015 

0.021 
0.023 
0.019 
0.016 
0.016 

0.005 
0.063 
0.031 
0.043 
0.063 

0.025 
0.025 
0.025 
0.025 
0.025 

0.016 
0.025 
0.021 
0.021 
0.026 

0.003 
0.003 
0.015 
0.014 
0.002 

Trained with data set 
1 and tested with data 

set 35-234 

R 
RCRC 
RMVP 
REX 
RFCS 

0.617 
0.306 
0.914 
0.444 
0.048 

0.036 
0.034 
0.034 
0.035 
0.028 

0.030 
0.030 
0.030 
0.036 
0.025 

2.014 
0.736 
1.032 
0.398 
0.085 

0.590 
0.973 
0.352 
0.731 
0.088 

0.025 
0.025 
0.025 
0.045 
0.025 

0.552 
0.351 
0.398 
0.281 
0.050 

0.074 
0.033 
0.020 
0.022 
0.004 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Train and test results for untransformed measured 
reflectance(R), a) for data set 35-1, b) for data set 35-234. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2: Train and test results for RMVP, a) for data 35-1,  
b) for data set 35-234. 
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Fig. 3: Train and test results for RCRC, a) for data set 35-1,  
b) for data set 35-234. 
 

In the present work, the use of color differences has 
intentionally been avoided since color differences could 
give large errors as compared to visual assessments. In 
addition, to obtain color differences, the predicted recipes 
would have to first be dyed which would introduce 
further errors due to the repeatability of the dyeing 
procedure. Therefore, the performance of the network 
would be masked by these additional error sources. The 
use of MSE and concentration differences, most certainly, 
do not have these disadvantages and would only be 
indicative of the networks real performances. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Train and test results for REX, a) for data set 35-1,  
b) for data set 35-234. 
 
RESULTS  AND  DISSCUSSION 

As can be seen from Figures 1 to 5, training with 348 
samples of data set 1 and testing with data set 35-1, i.e. 
the data set of the same origin leads to small MSE for the 
training and test data. The MSE of the test data almost 
superimpose on the MSE of the train data being always a 
little bit higher than the training data irrespective of the 
input functions. This trend also holds good for 
concentration differences between the actual and predicted 
concentrations as is illustrated in Table 2. This is indicative 
of   a   well - trained   artificial    neural   network   giving  
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Fig. 5: Train and test results for RFCS, a) for data set 35-1,  
b) for data set 35-234. 
 
a maximum average concentration difference of 0.026 
(i.e. default of the network's architecture) irrespective of 
the input function. However, the situation dramatically 

changes when the training is carried out by data set 1 and 
tested with data set 35-234, i.e. the data set of completely 
different origins. As can be seen from the right hand side 
graphs of Figs. 1 to 5, except for RFCS, the MSE of the 
test data for all the other input functions deviate (diverge) 
from the MSE of the training data; the deviation being 
maximum for the untransformed function R. 

Similar previous work published elsewhere [8,9] 
determined the errors involved in such a neural  networks 

predictions by five statistical parameters namely CV%, γ 
[14], R2, E% [15] and performance factor (PF/4) [16]. 
Percentage errors depicted by the performance factor 
were reported to be up to 67 % for the input functions R, 
RCRC, RMVP and REX, showing very poor performance. On 
the other hand a PF/4 of less than a mere 10 percent (i.e. 
greater than 90 percent accurate predictions) for RFCS as 
the input function indicated excellent performance.         

All the results favor the utilization of  RFCS as the 
input function for artificial neural networks match the 
prediction systems as well as other prediction systems 
based on all models relating reflectance (color) to 
colorant concentrations.  

This is for the simple reason that RFCS enhances the 
capability of such systems by increased  generalization of 
the relationship (i.e. less variables hence more 
intelligence). How RFCS is able to increase the 
intelligence of prediction systems is the 64000 dollar 
question. It is obviously known that the reflectance data 
contains much more information than the tristimulus 

values.  
However according to many workers [6,7] the 

reflectance data comprises of two different parts of data: 
One part giving the color stimulus component(i.e. part of 
the reflectance data required to calculate the tristimulus 
values) and the second part giving the corresponding 
metameric black component (i.e. part of the reflectance 
data required to calculate the degree of metamerism 
(RMB).  

In early color match prediction systems, attempts 
were made to obtain spectral non-metameric matches but 
to no avail. The reason why the early and subsequent 
spectral match prediction systems were not successful is 
that the measured reflectance contains too much 
information (i.e. RFCS +RMB) giving rise to miscom-
prehensions leading to erroneous miscalculations. The 
spectral match prediction procedures were soon set aside 
and tristimulus (metameric) match prediction systems 
became the norm.  

However, by the same line of reasoning the measured 
reflectance contains more than the necessary information 
required for a tristimulus match to be envisaged and again 
it would lead to erroneous miscalculations. Based on the 
same premise the artificial neural network prediction 
systems would also lead to similar erroneous 
miscalculations. In addition, to which, there is a further 
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disadvantage of the artificial neural network not being 
able to make one→many mappings.  

These disadvantages would no longer hold true for 
metameric samples since the metameric black component 
is extracted from the measured reflectance in the suggested 
RFCS transformation.  

We truly believe that the only logical procedure out of 
such confusion is to split the measured reflectance into its 
components (i.e. RFCS and RMB). Utilizing RFCS as the 
input function for an artificial neural network or any other 
match prediction system would give outstanding 
performance as has been shown in the present paper 
because it produces a real spectral match making the 
changes in the substrate, set of colorants and dyeing 
procedures of secondary importance. This would mean 
vastly reduced number of training samples i.e. 
optimistically speaking, only one set of training samples 
covering the entire color gamut would suffice for all 
predictions irrespective of substrates, set of colorants and 
dyeing procedures. The predictions made by training with 
one set of data will hold good for all other sets of data. It  
would be hoped that the RFCS input  function of this 
carefully prepared set of data might finally be used to 
optimize the artificial neural networks architecture itself 
giving optimized network performances, equal in 
intelligence to the visual system of match prediction, but 
with the added advantage of extreme objectivity. 
 
CONCLUSIONS 

The aim of the present investigation was to use a 
series of transformation of measured reflectance in order 
to enable an optimized artificial neural network system of 
color match prediction to predict the concentrations of a 
given set of colorants of one data set whilst the network 
was trained by a data set of a completely different origin. 
The preliminary results demonstrate that RFCS shows 
promise for the goals sough after. Should the trend  
hold true for other sets of data and the visual implications 
of the percentage errors in concentration differences  
be acceptable, then vast reduction of training samples  
can be visualized.  

The idea could be extended into visualizing that 
substrates, sets of colorants and coloration procedures 
would have no or vastly reduced effects on the predictions. 
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