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ABSTRACT: Diesel engine emission standards are being more stringent as it gains more publicity 

in industry and transportation. Hence, designers have to suggest new controlling strategies which 

result in small amounts of emissions and a reasonable fuel economy. To achieve such a target, 

multi-objective optimization methodology is a good approach inasmuch as several types of objective 

are minimized or maximized simultaneously. In this paper, this technique is implemented on a 

closed cycle two-zone combustion model of a DI (direct injection) diesel engine. The main outputs 

of this model are the quantity of NOx, soot (which are the two main emissions in diesel engines) and 

engine performance. The optimization goal is to minimize NOx and soot while maximizing engine 

performance. Fuel injection parameters are selected as design variables. A neural network model of 

the engine is developed as an alternative for the complicated and time-consuming combustion 

model in a wide range of engine operation. Finally design variables are optimized using an 

evolutionary genetic algorithm, called NSGA-II. 

 

 

KEY  WORDS: Diesel engine, Emission, Multi-objective, Neural network, NSGA-II, Performance. 

 

 

INTRODUCTION 

Public concern about environment is increasing in 

consequence of daily growth of diesel engine usage in 

industry and transportation. Air pollution problems, 

global  warming,  greenhouse  effects and acid rain would 

 

 

 

cause serious problems at a global scale. These effects are 

mainly related to emissions of nitrogen oxides (NOx), 

particulate matter (PM) and unburned hydrocarbons 

(HC).  On   the   other   hand,   depletion   of   fossil   fuel 
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resources has enormously duplicated global concerns 

about the future fuel reservoirs. Hence, the allowable 

limits of exhaust emissions are being reduced and 

stringent emission standards are being legislated. In order 

to comply with these regulations, the diesel engine 

industry has undergone a great technological development 

in the last few years, creating a high number of new 

strategies such as electronic control, new injection systems 

allowing higher pressures, different injection events, etc 

[1-3].  

As a result, the problem of optimization of the engine 

management in order to simultaneously comply with 

emission regulations and fuel economy requirements has 

become a difficult task, especially due to the increased 

number of degrees of freedom in the engine operating 

parameters. This optimization process is carried out 

during the development of a new engine, and is usually 

known as engine pre calibration. Although calibrations 

were completely based on empirical results in the past, 

the development in technology has incorporated new 

model-based techniques [4-6].  

Among different models that are developed for diesel 

engine combustion up to now, phenomenological models 

have sufficient accuracy to predict engine emissions and 

performance. In this paper a two-zone combustion model 

of a diesel engine, which yields the quantities of engine 

emissions (NOx and soot) and performance (IMEP) in a 

closed cycle, is applied. The target is to perform a 

simultaneous optimization of NOx and soot in a way that 

a reasonable engine performance is achieved. Classical 

methods for optimization, based on numerical techniques, 

have been applied to the optimization of diesel engines  

in different publications. In [8-9], a simple gradient 

method is used, where only one parameter is changed 

during iterations. In [10-12], a steepest descent method  

is followed.  

However, Numerical methods for optimization suffer 

from some limitations such as the difficulty to escape 

from local minima and the dependence of the solution on 

the initial value chosen. But, genetic algorithm (GA) 

methods suggest an easy and trustable way to solve 

optimization problems. Although the computational time 

may be larger than that of numerical methods, where the 

search domain is rather large, GA is much more 

applicable due to its ability to search through the work 

space. Moreover, artificial neural networks (ANNs) are 

an emerging tool of artificial intelligence, which have 

been shown to be effective in solving a wide range of 

problems, including many applications to engine 

modeling [7]. The structure of ANNs enables them to 

model complex nonlinear multiple problems, which 

makes them a well-suited method for emission modeling. 

In addition, ANN can produce fast prediction responses, 

which represent an important advantage in comparison 

with alternative modeling techniques, such as physical 

and chemical models.  

A single objective genetic algorithm, together with a 

neural network model of the engine based on 

experimental data, is implemented in [13]. Anyway, 

when we are engaged with a problem that has more than 

one objective, a single GA does not seem to be 

appropriate and a multi-objective algorithm should be 

applied. Hiroyasu has treated the problem of engine 

emission optimization by applying a multi-objective 

genetic algorithm coupled with a diesel engine combustion 

model in [14]. 

In this work, an ANN model based on a two-zone 

engine model is presented and optimized by NSGA-II as 

one of the powerful evolutionary algorithms of multi-

objective optimization. For the optimization problem 

parameters of fuel injection, start of injection (SOI), 

injection duration and AFR (air to fuel ratio) are selected 

as design variables. The influence of these design 

variables on the engine operation is assessed by varying 

each parameter in a specific range and sampling the 

model outputs; thereby, a data sheet can be obtained. The 

data sheet will be used to generate an artificial neural 

network model of the engine as an alternative to the 

combustion model. Once the neural network model of the 

engine has been developed, results of trained neural 

network will be used for optimization. At first, the two-

zone combustion model is briefly explained. Afterwards, 

neural network model and optimization algorithm are 

introduced. Finally, results of multi-agent optimization 

are presented. 

 

COMBUSTION  MODEL 

In a two-zone combustion model, the combustion 

chamber is divided into two zones. The first zone is the 

unburned zone, which includes the unburned mixture of 

fuel, air and residual gas and the second zone is the 

burning  zone.  The  current  two   zone   model   includes 
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processes occurring during the closed cycle (compression 

and expansion strokes). Main in-cylinder processes which 

are air motion, fuel spray development and mixing, spray 

impingement on the wall, turbulent heat transfer and 

chemistry of combustion are modeled here. The fuel 

considered here is n-dodecane (C12H26), representing a 

common fuel for commercial diesel engines. 

 

Conservation and state equations 

In order to determine the temperature and pressure 

during compression stroke, the first law of thermo-

dynamic for a closed system, and equation of state are 

used. Applying these two equations, temperature and 

pressure change per crank angle(an engine crank rotates 

720 degrees per a complete cycle, and at the Top Dead 

Center the crank angle is assumed to be zero) can be 

stated as follows: 
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Equations (1) and (2) are solved simultaneously by 

the 4th-order Runge-Kutta’s method. The instantaneous 

volume of the cylinder is given by: 
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During combustion and expansion, the first law of 

thermodynamics for an open system is applied for each 

zone. Surrounding air just loses mass into the burning 

zone; therefore, the first law for this zone would be: 

aadmhPdVdEdQ ++=                                                (4) 

The burning zone not only receives mass from the air 

zone, but also there is an enthalpy flow from the fuel 

which is ready to be burned in the time step. So, the first 

law will be: 

ffaa dmhdmhPdVdEdQ −−+=                                   (5) 

 

Spray modeling 

Spray characters have a great effect on diesel 

combustion. Among them, break-up time, break-up 

length, spray penetration and air entrainment are more 

important. Here, correlation of Hiroyasu et al., which is 

based on turbulent gas jet theory, is used for spray tip 

location as a function of time [15]. Correlations used for 

spray penetration and breakup time are as follows: 
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∆p represents the pressure drop across the nozzle, 

which is calculated as follows: 

cylfl PPp −=∆                                                                   (9) 

 

Combustion and emission modeling 

The main calculation procedure is based on the 

integration of the first law of thermodynamics and the 

perfect gas state equation combined with the various sub-

models, for each zone separately. The semi-empirical 

model of Whitehouse and Way is used for calculating the 

rate of combustion. The injected fuel in the burning zone 

mixes up with the air entrained from the air zone via a 

mixing and diffusion process, while the burning rate of 

the fuel is expressed by an Arrhenious-type expression. 

The generally accepted kinetics formation scheme 

proposed by Lavoie et al. is used for calculation of nitride 

oxide [16]. The net soot formation rate is calculated by 

using the model proposed by Hiroyasu et al. [15], as 

modified by Lipkea and Dejoode [17]. Detailed 

explanation of the model can be found in [18-21]. 
 

Modeling results 

Fig. 1 illustrates the predicted and measured 

quantities of pressure in the case of 80 % load and 2500 

rpm. As can be seen there is a good agreement between 

measured and predicted data. In Figs. 2 and 3 simulated 

quantities of NOx and soot is illustrated for the case of  

80 % load and 2500 rpm. 
 

NEURAL  NETWORK 

Artificial Neural Network (ANN) is a powerful  

tool  used  in  modeling  of   time   series  processing  and 
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Fig. 1: Calculated and experimental pressure diagram, at  

80 % of full load, 2500 rpm and a static injection timing of 

340° crank angle [21-22]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Results of modeling for NOx, at 80 % of full load, 2500 

rpm And a static injection timing of ��� CA BTDC [21-22]. 

 
pattern recognition, and also has its root in engineering, 

neuro-science  and  mathematics.  ANN  consists  of  

simple and adaptive processing units which is often 

called neurons.  

A simple neuron is an information-processing unit 

that is fundamental to operation of neural network. 

Neurons are interconnected and form a large network. In 

neural modeling, the inputs are known or they can be 

measured and the behavior of outputs is investigated 

when input varies. The schematic of Fig. 4 shows the 

model of a neuron, which forms the basis of designing 

neural networks. 

Three basic elements of the neuronal model are as 

follows [22]: 

Table 1: Ranges of the designed parameters used for data 

generation. 

Design Parameter Range of Variation 

SOI 330-350 crank angle 

AFR 24-66 

Injection Duration 16-41 crank angle 

Engine Load 40%-100% 

Engine RPM 1500-4000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Results of modeling for soot, at 80 % of full load, 2500 

rpm and a static injection timing of 2�� CA BTDC [21-22]. 

 
1- A set of synapses or connecting links, each of 

which is characterized by a weight or strength of its own 

as Wki. 

2- A summation block for adding input signals, 

weighted by the respective synapses of the neuron. 

3- An activation function ϕ(⋅) for limiting the 

amplitude of the output of a neuron. 

The activation function limits the amplitude range  

of the output signal to some finite value. There are 

various types of activation functions, such as threshold 

function, piecewise-linear function, and sigmoid function. 

Here, we have made use of a certain ANN architecture 

known as the multilayer feed-forward neural network or 

multilayer perception (MLP). 
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Fig. 4: Nonlinear model of neuron [22]. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5: Results of ANN testing for IMEP at 80 % load and 

2500 rpm. 
 

Network Implementation 

The  range  of  variation  of  the  design  parameters is 

shown in table 1. These data are used for training and 

testing the neural network. For every set of engine load 

and speed a network is trained with SOI, AFR and 

injection duration as inputs and NOx, soot and IMEP as 

outputs. 256 samples are applied for training in each set 

of data. The input layer uses 3 nodes, two hidden layers 

are constructed of 15 nodes in each layer and the output 

layer includes 3 nodes. The training procedure is based 

on “Quick Propagation” algorithm. 128 samples were 

used in testing procedure of each data set. A sample 

validation for NOx, soot and IMEP quantities at 80 % 

load and 1500 rpm is displayed in Figs. 5, 6 and 7. 

Surprisingly   the  results  are  so   satisfactory,   that   one 

can  not  distinguish  test  and  trained   curve   (solid  and 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Results of ANN testing for soot at 80 % load and  

2500 rpm. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7: Results of ANN testing for NOx at 80 % load and  

2500 rpm. 

 

dashed curves) from each other. Network errors are 

calculated based on mean square error (MSE) formula 

given as below: 
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Where i is number of nodes in output layer, p is the 

number of samples and Ypredicted is network outputs and 

Yreal is the correct data of well depths, which extracted 

before. MSE value is 0.0023 for the trained data. This 

value for test data is equal to 0.0065. 

 
MULTI-OBJECTIVE  OPTIMIZATION 

In reality, most optimization problems deal with more 

than  one  objective.  Usually,  the target  is to find design 
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Fig. 8: Pareto optimum solutions [14]. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: The concept of Pareto ranking [14]. 
 

variables like x that minimize or maximize k objective 

functions within m constraints. This type of optimization 

problems is called Multi-objective Optimization Problems 

(MOPs) and can be formulated as follows [23, 28]: 
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If the objective functions are in the trade-off 

relationship, it is difficult to minimize or maximize all 

objective functions at the same time. In this case, the 

concept of dominancy and Pareto optimum solution 

should be utilized. 

 

Dominant solution definition 

Suppose 
n
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�

 and is a better solution.  

In Fig. 8, the concept of the Pareto optimum solutions is 

illustrated in the case of two objectives, which are 

supposed to be minimized. Solution A yields better 

results for both f1 and f2 than solution C. In this case, it is 

said that C is dominated by A. Therefore, A is better than 

C. On the other hand, the value of f1 of A is better than 

that of B, but f1 for B is better than that of A. Therefore, it 

is not possible to conclude which of the two solutions is 

better. In this case A and B are called non-dominant 

solutions. In practice, multi objective optimization 

problems deal with non-dominant solutions. A set of 

these non-dominant solutions is called a Pareto optimum 

set. The line of the Pareto optimum solution is called a 

Pareto front. 

 

Genetic algorithms for MOPs 

The Genetic algorithms (GA) can be applied to the 

problems whose search space is discrete. Since GA’s are 

multipoint search methods, these algorithms are very 

suitable for finding a Pareto optimum set [24]. Several 

algorithms for multi-objective optimization problems 

have been reported up to now. SPEA-2 and NSGA-II are 

two examples of these algorithms [25]. In multi-objective 

GAs, the Pareto ranking is often used for determining the 

fitness value [26]. The Pareto ranking is determined 

according to the following procedure. For each solution, 

the number of the solutions that are dominant to the 

focused solution is counted. Pareto ranking is this number 

+ 1. The concept of the Pareto ranking is shown in Fig. 9. 

In this example, there are four solutions: A, B, C, and D. 

A, B, and C are  non-dominant  solutions,  and  therefore, 

their Pareto rankings are 1. D is dominant to A and B and 

the Pareto ranking of D is 1 + 2 = 3. 

 

NSGA-II 

Among various multi-objective EAs, those who use 

an elite-preserving operator are of more interest. No 

matter how the elitism is introduced, it makes sure that a 

good solution found early in the run will never be lost 

unless a better solution is discovered. Moreover, the 

presence  of  elites  enhances  the  probability  of creating 
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Fig. 10: Schematic of the NSGA-II procedure [27]. 
 

better offspring. Some EAs, like Rudolph’s elitist MOEA, 

use only an elite-preservation strategy, but NSGA-II also 

uses an explicit diversity-preserving mechanism. In Fig. 

10 the procedure of NSGA-II is shown. Procedure of 

NSGA-II is outlined in appendix “A”. 

 

GENETIC  ALGORITHM  IMPLEMENTATION 

We have developed a NSGA-II code in Matlab 

software. There are two setting parameters to execute the 

optimization code. Firstly, the number of population 

should be set, which is chosen 200. It could be noted that 

the search domain will grow as the population number 

increases. Therefore, the chance for finding the global 

minima rises in a certain number of generations. 

Secondly, generation number - the number of iterations to 

achieve the global minima - is adjusted to 1000. The 

structure of Multi-objective Optimization using genetic 

algorithm, NSGA-II consists of three input parameters 

and three objectives. Inputs are selected from trained 

neural network outputs and outputs are optimized values 

of NOx, soot and IMEP. Optimized quantities of design 

variables for each set of engine load and speed are 

determined. In order to reduce the calculation cost and to 

strengthen the optimization process the results of the 

trained networks has been applied for optimization 

instead of the combustion code. According to the weights 

of the trained networks a fitness function has been 

introduced and optimized. 

In Fig. 11 diagram of the derived Pareto solutions for 

the case of 2000 rpm and 60 % load is shown. All the 

plotted solutions  are  those  that  dominate  other  derived 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: Derived Pareto solution at 2000 rpm and 60 % load. 
 

solutions during searching through the objective space. 

Every single point in this diagram introduces an 

optimized set of NOx, soot and IMEP that is in 

accordance with a specific set of design variables. 

In order to determine a single set of optimized  design 

variables for the engine operation, one should suggest a 

specific constraint. In other words, a logical constraint 

like the relation between objectives’ quantity should be 

considered and imposed on the achieved Pareto solutions. 

Hence, just the Pareto solution that satisfies the constraint 

would be the final answer. 

The constraint which we consider in this paper is the 

value of NOx due to its strong and serious effects on 

human health parameters. Hence, the solutions that have 

lower value of NOx in comparison with others are 

selected. As a result of considering the NOx-value to be 

the criterion, IMEP value - the representative of generated 

power in engine - will decrease. Definitely, it can be 

completely different when we get engaged upon different 

situations. These situations include other aspects of 

engine application. For instance, there may be a demand 

on simultaneous minimizing of NOx and soot. This could 

be done by allocating a weight factor for the NOx and 

soot separately, showing the importance of each one, and 

by considering a new fitness function that is generated by 

the sum of weighted objectives. In general, the problem 

of multi-objective optimization has to reduce to a single 

objective problem, otherwise the achieved Pareto 

solutions can not be applied for a specific application.   

Regarding to the aforementioned constraint, optimized 

quantities  of  engine  outputs are calculated for some sets 
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Table 2: Results of optimization. 

Rpm Load (%) AFR DUR (deg) SOI (deg) NOx (ppm) Soot (mg/m^3) IMEP (bar) 

1500 40 36 31 347 2146 65.951 5.52 

2000 40 42 21 347 2184 34 5 

3000 40 30 41 347 2223.5 74 4.5 

4000 40 30 31 350 2244 19.1 2.8 

1500 60 30 26 347 2232.5 74 2.2 

2000 60 42 21 350 2175 43.4 2.35 

2500 60 30 41 350 2317.8 34.6 8.8 

3000 60 30 31 347 2330.6 31 2.5 

3500 60 36 41 344 2339 29.95 3.4 

4000 60 42 31 347 2332 56.04 10.8 

1500 80 42 21 347 2420.7 53 8.5 

2000 80 36 21 350 2421 51 3.5 

2500 80 30 36 350 2405.5 56 11.5 

3000 80 30 31 344 2401 51 3 

4000 80 42 21 350 2517 107 10.5 

1500 100 42 36 347 2374.9 162 3.8 

2000 100 42 31 350 1511.6 211 3.5 

2500 100 42 26 350 1653.9 47.07 7 

3000 100 42 26 344 2458.5 51.64 4.2 

3500 100 36 36 350 2470 54.5 6.4 

4000 100 48 31 347 2568.2 35.39 5.7 

 

of load and rpm. To obtain the corresponding design 

variables quantities, a new neural network has been 

trained. Inputs of this network are the optimized values of 

emissions and performance and outputs are the optimized 

values of design variables. In table 2, achieved data for 

every set of engine load and speed is shown. In Figs. 12, 

13 and 14 optimized values of AFR, SOI and injection 

duration are plotted for different sets of  load  and  engine 

speed. Using this optimization algorithm a pre map of 

engine for minimum emission and optimum performance 

can be obtained. 

 

CONCLUSIONS 

In this paper, the problem of optimization of diesel 

engine emissions and performance has been studied.  

As the objectives of the optimization (NOx-soot) are in a 

trade-off   mode   with   each   other,   applying   a  multi- 

objective algorithm was inevitable. Derivation of the 

Pareto optimum solutions by GAs requires a large 

number of calculation iterations. Hence, a neural network 

model of the engine, which has proved to be an efficient 

tool for simulating diesel engine combustion, was 

developed. Finally, applying the constraint of minimum 

values of NOx, the multi-objective problem was reduced 

to a single objective one and the Pareto solutions that 

satisfied the constraint were highlighted as the final 

answer. As the main result of this work, is the pre 

calibration of the engine concerning emissions and 

performance, which plays an important role in test time 

and cost saving. 

 

Nomenclatures 

Rc                                                           Compression ratio 

Vcl                                Clearance volume of cylinder (m
3
) 
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Fig. 12: Optimized values of AFR for different rpm-load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13: Optimized values of SOI for different rpm-load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 14: Optimized values of injection duration for different 

rpm-load. 

R                Ratio of connecting rod length to crank radius 

Pfl                                                     Fuel line pressure (Pa) 

Pcyl                                                   Cylinder pressure (Pa) 

T                                                               Temperature (K) 

φ                                                         Crank angle (degree) 

V                                Instantaneous cylinder volume (m
3
) 

Rmol                  Universal gas constant, 8314.3 (J/kmol K) 

Cv       Constant volume specific heat capacity (J/kmol K) 

Q                                Heat transfer to the cylinder wall (J) 

tbr                                                            Break- up time (s) 

ρl                                              Liquid fuel density (kg/m
3
) 

ρa                                                          Air density (kg/m
3
) 

DN                                               Nozzle hole diameter (m) 

H                                                   Specific enthalpy (J/kg) 

 

Acronyms 

DI                                                               Direct injection 

GA                                                          Genetic algorithm 

MOP                                      Multi-objective optimization 
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