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ABSTRACT: In this article, the effect of operating conditions, such as temperature, Gas Hourly 

Space Velocity (GHSV), CH4 /O2 ratio and diluents gas (mol% N2) on ethylene production by 

Oxidative Coupling of Methane (OCM) in a fixed bed reactor at atmospheric pressure was studied 

over Mn/Na2WO4 /SiO2 catalyst. Based on the properties of neural networks, an artificial neural 

network was used for model development from experimental data. In order to prevent network 

complexity and effective data input to network, principal component analysis method was used and 

the numbers of output parameters were reduced from 4 to 2. A feed-forward back-propagation 

network was used for simulating the relations between process operating conditions and aspects of 

catalytic performance, which include conversion of methane, C2
+ products selectivity, yield of C2

+ 

and C2H4 /C2H6 ratio. Levenberg– Marquardt method is presented to train the network. For first 

output, optimum network with 4-9-1 topology and for second output, optimum network with 4-6-1 

topology was prepared. 
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INTRODUCTION 

Oxidative Coupling of Methane (OCM) Process 

Oxidative Coupling of Methane (OCM) is one of  

the promising routes for direct conversion of natural gas 

to higher hydrocarbons, especially ethylene that can be used 

for future production of basic petrochemicals (ethylene 

and ethane) or liquid fuels [1,2]. OCM is particularly 

important because ethylene is precursor to many other 

reaction products [3]. 

The key to commercial success of OCM is the 

identification of a suitable catalyst capable of high C2  

 

 

 

selectivity and high yield at significant level of methane 

conversion especially at low temperature conditions [2,4]. 

With the aim of improving ethane and ethylene's yield, 

many researches have been focused on the catalysts used 

in the OCM process, their properties and influential 

factors on their performance [5]. Fang et al. have 

identified Mn/Na2WO4/SiO2 as a promising OCM catalyst. 

Malekzade et al. represented that the performance of 

MOx/Na2WO4/SiO2 catalysts for the oxidative coupling of 

methane is well correlated with the electrical conductivity  
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of the catalysts under OCM conditions [6]. Mahmoodi et al. 

have indicated that the sodium salts and different oxo 

anions largely influence the structures, reducibility, and 

catalytic performances of the M–Na–Mn/SiO2-based 

nanocatalysts (M = V, Cr, Nb, W, Mo)  

in the oxidative coupling of methane reaction. Among 

these synthesized nanocatalysts, Na2WO4–Mn/SiO2  

as well as Na2MoO4–Mn/SiO2 shows the best catalytic 

performance at the OCM reaction conditions [7]. In this 

work Mn/Na2WO4/SiO2 has been applied to OCM 

reaction because of its high catalytic performance. 

 
Artificial Neural Networks 

Neural networks, or more precisely Artificial Neural 

Networks (ANNs), are a branch of artificial intelligence [8]. 

ANNs were inspired by biological neural networks [9,10]. 

They were made of a large number of simple computing 

elements, called nodes or neurons that arranged to form 

an input layer, one or more hidden layers and an output 

layer [11]. They further include interconnections between 

the nodes of successive layers through the so-called 

weights [12]. The role of the weights is to modify  

the signal carried from one node to the other and either 

enhance or diminish the influence of the specific 

connection [13]. Each neuron in the hidden layer receives 

weighted inputs from each neuron in the previous layer 

plus one bias, as given by Eq. (1). 

j 1N

j 1
i k,i ik

k 1

Z X W b
−

−

=

� �
� �= +
� �
� �
�                                                       (1) 

where 
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kX
−

 denotes the input from k-th node in the  

j-th layer, Wk,j is the weight of the link between node k and 

all the nodes in the previous layers, and �� is the bias  

to the node, Nj-1 is the number of nodes in the layer j-1. 

This sum is passed along to an activation function, to produce 

the output of the node, calculation as: Yi = f(Zi) [10]. 

Activation or transfer function can be any type of 

mathematical function, but sigmoid function (Eq. (2))  

is the most commonly used [9,10]. 
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The internal weights of the network are adjusted  

in the course of an iterative process termed training [12] and 

the algorithm used for this purpose so-called training 

algorithm. The error Back-Propagation (BP) algorithm  

is the most common form of learning, utilized today  

in artificial neural networks. There exist many network 

architectures such as Multilayer Perceptron, Radial Basis 

Function, Probabilistic Neural Networks and several 

others. Among them, Multilayer Perceptron is the most 

popular [10]. The number of nodes in the feed forward 

neural network input layer is equal to the number  

of inputs in the process, whereas the number of output nodes 

is equal to the number of process output. 

Basically, the back-propagation training procedure  

is intended to obtain an optimal set of the network weight, 

which minimizes an error function. The commonly 

employed error function is the Mean Squared Error (MSE) 

as defined by 

( )
PN K

2
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P i 1 k 1

1
MSE t y

N K
= =

= −��                                         (3) 

Where NP and K denote the number of patterns and 

output nodes used in the training, � denotes the index of 

the output pattern (vector), and � denote the index of  

the output node. Meanwhile, ti,k and yi,k express the desired 

(target) and predicted values of the k-th output at i-th 

input pattern, respectively [14]. 

For NN training, available data is divided into three 

parts: training set, test set and validation set.  

The parameters Wk,i and bi in Eq. (1) are calculated from 

training set. Training has been continued whenever error 

on the validation set starts to increase. Test set is used  

to evaluate neural network performance [15]. 

ANNs have been used for many chemical engineering 

applications such as steady state and dynamic process 

modeling, process identification, yield maximization, 

nonlinear control and fault detection and diagnosis [16]. 

 

Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a classical data 

analysis method that provides a sequence of the best 

linear approximations to a given high-dimensional data 

set. It is one of the most popular techniques for 

dimensionality reduction [17]. There are different routes 

for selection of a subset (consist of m principal 

component) from variables of the main set such as scree 

graph and cumulative percentage of total variation that  

in both route, covariance matrix, its eigenvalues and 

eigenvectors must be calculate. [18]. 
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The rule for choosing m (the number of principal 

components) is to select a cumulative percentage of total 

variation to which it is desired that the selected Principal 

Components (PCs) should contribute (for example 80% or 

90%). The required number of PCs is then the smallest 

value of m for which this chosen percentage is exceeded. 

The obvious definition of percentage of variation 

accounted for the first m PCs is as follows 

m

k

k 1
m p

k

k 1

t 100 =

=

λ

=

λ

�

�
                                                                       (4) 

Where λk denotes the eigenvalue (variance) of the  

k-th PC. 

Choosing a cut-off t* somewhere between 70% and 

90% and retaining m PCs, where m is the smallest integer 

for which tm > t*, provides a rule which in practice 

preserves in the first m PCs most of the information [18]. 

The scree graph, which was suggested by Cattell (1966) 

but which was already in common use, is even  

more subjective in its usual form, as it involves looking  

at a plot of eigenvalues (λk) against the number of 

components (k) the slope of lines joining the plotted 

points are steep to the left of k, and not steep to the right. 

This value of k is then taken to be the number of 

components m to be retained [18,19]. 

All steps for PCA method is presented in Fig. 1. 

Among all modeling methods, ANN presents more 

acceptable and accurate models. For this reason, it is  

the objective of this work to develop a model using ANN  

to predict the performance of Mn/Na2WO4/SiO2 catalyst 

in OCM reaction which is occurred in the fixed bed reactor 

at atmospheric pressure. 

 

EXPERIMENTAL  SECTION 

Catalyst preparation 

The Mn/Na2WO4/SiO2 Catalyst was prepared  

by incipient wetness impregnation method. The syntheses 

of catalyst was carried out by impregnating of silica support 

with aqueous solutions containing 2 wt.% Manganese 

nitrate and 5 wt.% sodium tungstate. Then mixture  

was evaporated to dryness by using vacuum and sample 

was calsinated at 850 °C. The catalyst was then palletized, 

crushed and sieved to 20–25 mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: flowchart showing the steps of PCA method. 

 
Reactor system 

The catalytic reaction was carried out in a tubular 

fixed bed quartz micro reactor with internal diameter 12mm 

shown in Fig. 2. The amount of 0.5 g catalyst was loaded 

in the quartz reactor filled with quartz granules in the test 

space of the reactor so far to minimize the contribution 

from any gas-phase reactions. The remaining space of  

the reactor below the catalyst bed was filled with quartz 

wool. The reactor was heated by an electrical furnace and 

the reaction temperature was measured with a K-type 

thermocouple placed in a well in the catalyst bed and 

controlled with T.I.C (Jumo Dicon 5.1) as well as mass 

flow controlled with electrical controller (Brooks 5580). 

Reactant gases was included CH4 (99.996%), O2 (99.99%) 

and N2 (99.99% purity). Reaction was done at different 

conditions but in constant atmospheric pressure. The operating 

parameters and their ranges were shown in Table 1. 
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Table 1: Operating parameter and their ranges. 

Parameters Range 

Temperature 750 - 850 °C 

Gas Hourly Space Velocity 

(GHSV) 
12000 - 24000 cm3/gh 

Mol Percent of N2 20 – 60 

Ratio of CH4/O2 2 – 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Schematic drawing of reactor. 

 

The reaction products were then analyzed with an on-line 

gas chromatography (Chrompack) equipped with FID 

with helium for identification of compounds except 

methane and TCD for methane, using a Porapak Q 

column for the separation of ethane, ethylene and  

carbon monoxide and a molecular sieve column for the 

separation of oxygen, nitrogen, methane and carbon 

monoxide (Fig. 3). Results obtained from products 

analysis represented aspects of catalytic performance, 

which include conversion of methane, C2
+ products 

selectivity, yield of C2
+ and C2H4/C2H6 ratio. 

Some of the important parameters are defined as: 

 

Methane conversion: 

4

4
CH

4

moles of CH converted
x (%) 100

moles of CH in f eed
= ×  

Selectivity of 2C+  product: 

( )
2

2

C
4

2 moles of C
S (%)

moles of CH converted to all products
+

� ×
=  

 

Yield of 2C+  product: 

2
2C

Y (%) Methane conversion C Selectivity+
+= ×  

 

Gas hourly space velocity: 

( )3 1feed flow rate
GHSV cm g h

catalyst weight

−=  

 

NEURAL  NETWORK  MODELING 

In the present work the effect of operating conditions, 

such as temperature, Gas Hourly Space Velocity (GHSV), 

CH4/O2 ratio and diluents gas (mol% N2) on ethylene 

production by Oxidative Coupling of Methane (OCM)  

in a fixed bed reactor at atmospheric pressure was studied 

over Mn/Na2WO4/SiO2 catalyst and use of neural networks. 

 

Training data generation 

For modeling the OCM process data acquired from 

reactor test was used. The data must be pre-processed  

so that the ANN becomes able to effectively learn from it. 

Some statistical analysis is applied to the data, all values 

that appear to be scattered far away from the majority  

of values, are considered as outliers and were excluded 

from the data set. After removing the outliers the number of 

data records in the database results in 100 data points. 

The database was divided into three distinct subsets.  

A first subset of 60 patterns is used to train the model,  

as previously discussed. The second subset of 20 patterns 

is the validation set which is used to determine when to stop 

the training stage. The third data set of 20 patterns is used 

to test the ANN and to evaluate the efficiency of  

the ANN predictions. All data sets are mutually exclusive 

sets of vectors selected from the same measured data 

from the reactor tests. 

 

Selection of ANN architecture 

A feed-forward back-propagation network, widely 

known as MultiLayer Perceptron (MLP), was used for 

simulating the relations between process operating 

conditions (the above-mentioned parameters) and aspects 

of catalytic performance, which include conversion of methane, 
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Fig. 3: Schematic diagram of experimental test rig system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Scree graph for output data (value on the diagram 

denote the cumulative percentage). 

 

2C+  products selectivity, yield of 2C+  and C2H4/C2H6 

ratio. In order to prevent network complexity and 

effective data input to network, Principal Component 

Analysis (PCA) method was used. 

In this paper, both route of cumulative percentage of 

total variation and scree graph has been used to determine 

the principal components. Cumulative percentage of total 

variation has been considered 90%. Scree graph for our 

experiment is presented in Fig. 4. Also values of 

cumulative percentage of total variations have been 

reported in this figure. 

Covariance matrix, the eigenvalues and eigenvectors 

of covariance matrix has been obtained as following: 

Cov(D) = 

������	 ����
� ����
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According to Fig. 4, first two variables have been 

chosen as the principal components by preserve 95.54% 

of variation (m=2). Therefore with multiplying the output 

data matrix (D) in the third and fourth column of  

the eigenvectors matrix (W), the new matrix consists of two 

columns is obtained (New D) and dimensions of data and 

subsequently the numbers of neural network output were 

reduced from 4 to 2. 

New D = D×W 
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Fig. 5: Initial ANN structure. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Final structure of networks. 
 

Then, initial ANN structure consists of 4 nodes  

in input layer and 2 nodes in output layer as shown in Fig. 5. 

Because of independent operation of each 2 nodes 

available at output layer, in order to avoid network 

complexity two specific neural networks were designed for 

each output as it shown in Fig. 6 (network 1 for out 1 and 

network 2 for out 2). Levenberg-Marquardt method  

was presented to train the networks. The Tangent-sigmoid 

function (Eq. (3)) was used as the activation function  

in both, the hidden and the output layers. 

n n

n n

e e
tan sig(n)

e e

−

−

−
=

+
                                                      (5) 

For supplementation of ANN structure, the number of 

nodes in hidden layer must be determined and the number 

of optimum nodes is selected based on minimum of Mean 

Squared Error (MSE) on test data set. 

MSE (error function) of different NN models for 

Network_out1 and Network_out2, against the number of 

neurons in the hidden layer, respectively are plotted  

as shown in Figs. 7 and 8. 

According to aforesaid figures for first output, 

optimum network with 4-9-1 topology (one hidden layer 

which includes 9 neurons) and for second output, 

optimum network with 4-6-1 topology (one hidden layer 

including 6 neurons) was prepared. 

 

Selection of training procedure and training precision 

As mentioned in Training data generation section 

after removing the outliers the number of data records  

in the database results in 100 data points. To avoid 

overtraining, the database was divided into three distinct 

subsets:  training set, test set and validation set. 

The error function (MSE) against the epoch for 

training, test and validation data set has been plotted  

in Figs. 9 and 10 for network1 and network 2, respectively. 

The error function for training patterns usually 

decreases with the progress of training, while that  

for validation patterns decreases at the initial stage  

of training and then increases with training further on,  

as shown in Figs. 9 and 10. If the validation error 

increases with continued training, the training  

is terminated due to potential for overtraining.  

If the validation error remains the same for more than  

10 successive epochs, it is assumed that the network  

has converged. It can be seen from above mentioned 

figures that the training stopped after only 16 iteration  

for network1 and 25 iterations for network2 because  

the validation error increased which means the training above 

this will impede the generalization capability of network. 

 

RESULTS  AND  DISCUSSION 

The obtained topologies for both neural networks 

must be evaluated. For this purpose the predicted values 

of network1 (neural networks output when test data set  

is used as input to the networks) for different time  

of measurement were plotted against the experimentally 

measured values for the corresponding times of 

measurement (acquired data) and were shown in Fig. 11. 

The correlation coefficient was also calculated for  

this network and found to be 0.977. Also a same work 

was done for network2 and the neural network output 

(predicted values) for this network is observed to fit well 

with the experimental data. This is also illustrated  

in Fig. 12. The fit is observed to be linear with correlation 

coefficient of 0.972. 
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Fig. 7 Comparison of actual and ANN predicted output1  

for Network1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Comparison of actual and ANN predicted output1  

for Network2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Training procedure of network1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Training procedure of network2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: Comparison of actual and ANN predicted output1  

for Network1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12: Comparison of actual and ANN predicted output2  

for Network2. 

 

Both two mentioned figures exhibit excellent 

agreement between the experimental and calculated data. 

So the obtained ANN models are adequate for modeling 

the OCM process over Mn/Na2WO4 /SiO2 catalyst and 

predicting aspects of catalytic performance in different 

operating condition for this process. 
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CONCLUSIONS 

In this paper, a feed-forward back-propagation network 

has been developed as a predicting model for OCM process 

over the Mn/Na2WO4/SiO2 catalyst that occurs in the fixed 

bed reactor at atmospheric pressure. It is proved that  

the trained network could well simulate the relations between 

operation conditions and catalytic performances. Finally  

it is suggested to use this model in optimum operating 

conditions to find out the best performance of this catalyst. 
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